| 所在主题: | |
| 文件名: Representation_and_approximation_of_ambit_fields_in_Hilbert_space.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3676140.html | |
| 附件大小: | |
|
英文标题:
《Representation and approximation of ambit fields in Hilbert space》 --- 作者: Fred Espen Benth and Heidar Eyjolfsson --- 最新提交年份: 2015 --- 英文摘要: We lift ambit fields as introduced by Barndorff-Nielsen and Schmiegel to a class of Hilbert space-valued volatility modulated Volterra processes. We name this class Hambit fields, and show that they can be expressed as a countable sum of weighted real-valued volatility modulated Volterra processes. Moreover, Hambit fields can be interpreted as the boundary of the mild solution of a certain first order stochastic partial differential equation. This stochastic partial differential equation is formulated on a suitable Hilbert space of functions on the positive real line with values in the state space of the Hambit field. We provide an explicit construction of such a space. Finally, we apply this interpretation of Hambit fields to develop a finite difference scheme, for which we prove convergence under some Lipschitz conditions. --- 中文摘要: 我们将Barndorff Nielsen和Schmiegel引入的范围场提升到一类Hilbert空间值波动率调制Volterra过程。我们将这类字段命名为Hambit字段,并证明它们可以表示为加权实值波动率调制Volterra过程的可数和。此外,Hambit场可以解释为一阶随机偏微分方程弱解的边界。该随机偏微分方程是在正实线上合适的希尔伯特函数空间上建立的,其值在Hambit场的状态空间中。我们提供了这样一个空间的明确构造。最后,我们应用哈姆比特场的这种解释发展了一种有限差分格式,并在一些Lipschitz条件下证明了其收敛性。 --- 分类信息: 一级分类:Mathematics 数学 二级分类:Probability 概率 分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory 概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Mathematical Finance 数学金融学 分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods 金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明