| 所在主题: | |
| 文件名: On_the_Solution_of_the_Multi-asset_Black-Scholes_model:_Correlations,_Eigenvalue.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3676160.html | |
| 附件大小: | |
|
英文标题:
《On the Solution of the Multi-asset Black-Scholes model: Correlations, Eigenvalues and Geometry》 --- 作者: Mauricio Contreras, Alejandro Llanquihu\\\'en and Marcelo Villena --- 最新提交年份: 2015 --- 英文摘要: In this paper, we study the multi-asset Black-Scholes model in terms of the importance that the correlation parameter space (equivalent to an $N$ dimensional hypercube) has in the solution of the pricing problem. We show that inside of this hypercube there is a surface, called the Kummer surface $\\Sigma_K$, where the determinant of the correlation matrix $\\rho$ is zero, so the usual formula for the propagator of the $N$ asset Black-Scholes equation is no longer valid. Worse than that, in some regions outside this surface, the determinant of $\\rho$ becomes negative, so the usual propagator becomes complex and divergent. Thus the option pricing model is not well defined for these regions outside $\\Sigma_K$. On the Kummer surface instead, the rank of the $\\rho$ matrix is a variable number. By using the Wei-Norman theorem, we compute the propagator over the variable rank surface $\\Sigma_K$ for the general $N$ asset case. We also study in detail the three assets case and its implied geometry along the Kummer surface. --- 中文摘要: 本文从相关参数空间(相当于一个N维超立方体)在定价问题求解中的重要性出发,研究了多资产Black-Scholes模型。我们证明,在这个超立方体内部有一个曲面,叫做Kummer曲面$\\Sigma_K$,其中相关矩阵$\\rho$的行列式为零,因此,$N$asset Black-Scholes方程的传播子的常用公式不再有效。更糟糕的是,在这个表面之外的一些区域,$\\rho$的行列式变为负,所以通常的传播子变得复杂和发散。因此,在$\\Sigma_K$之外的这些地区,期权定价模型没有得到很好的定义。相反,在Kummer曲面上,$\\rho$矩阵的秩是一个可变数。利用Wei-Norman定理,我们计算了一般$N$资产情况下变秩曲面$\\Sigma_K$上的传播子。我们还详细研究了三资产情况及其沿Kummer曲面的隐含几何。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Mathematical Finance 数学金融学 分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods 金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明