| 所在主题: | |
| 文件名: Sharp_convex_bounds_on_the_aggregate_sums--An_alternative_proof.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3677896.html | |
| 附件大小: | |
|
英文标题:
《Sharp convex bounds on the aggregate sums--An alternative proof》 --- 作者: Chuancun Yin, Dan Zhu --- 最新提交年份: 2016 --- 英文摘要: It is well known that a random vector with given marginal distributions is comonotonic if and only if it has the largest sum with respect to the convex order [ Kaas, Dhaene, Vyncke, Goovaerts, Denuit (2002), A simple geometric proof that comonotonic risks have the convex-largest sum, ASTIN Bulletin 32, 71-80. Cheung (2010), Characterizing a comonotonic random vector by the distribution of the sum of its components, Insurance: Mathematics and Economics 47(2), 130-136] and that a random vector with given marginal distributions is mutually exclusive if and only if it has the minimal convex sum [Cheung and Lo (2014), Characterizing mutual exclusivity as the strongest negative multivariate dependence structure, Insurance: Mathematics and Economics 55, 180-190]. In this note, we give a new proof of this two results using the theories of distortion risk measure and expected utility. --- 中文摘要: 众所周知,具有给定边际分布的随机向量是共单调的当且仅当其关于凸阶具有最大和[Kaas,Dhaene,Vyncke,Goovaerts,Denuit(2002),一个证明共单调风险具有凸最大和的简单几何证明,ASTIN Bulletin 32,71-80.Cheung(2010),《保险:数学与经济学》第47(2)卷,通过其分量之和的分布来表征共单调随机向量,130-136]且具有给定边际分布的随机向量是互斥的当且仅当其具有最小凸和[Cheung and Lo(2014),将互斥性描述为最强的负多元依赖结构,保险:数学与经济学55180-190]。在本文中,我们利用失真风险测度和期望效用理论对这两个结果给出了一个新的证明。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Risk Management 风险管理 分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications 衡量和管理贸易、银行、保险、企业和其他应用中的金融风险 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明