| 所在主题: | |
| 文件名: Convex_Hedging_in_Incomplete_Markets.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3678437.html | |
| 附件大小: | |
|
英文标题:
《Convex Hedging in Incomplete Markets》 --- 作者: Birgit Rudloff --- 最新提交年份: 2016 --- 英文摘要: In incomplete financial markets not every contingent claim can be replicated by a self-financing strategy. The risk of the resulting shortfall can be measured by convex risk measures, recently introduced by F\\\"ollmer, Schied (2002). The dynamic optimization problem of finding a self-financing strategy that minimizes the convex risk of the shortfall can be split into a static optimization problem and a representation problem. It follows that the optimal strategy consists in superhedging the modified claim $\\widetilde{\\varphi}H$, where $H$ is the payoff of the claim and $\\widetilde{\\varphi}$ is the solution of the static optimization problem, the optimal randomized test. In this paper, we will deduce necessary and sufficient optimality conditions for the static problem using convex duality methods. The solution of the static optimization problem turns out to be a randomized test with a typical $0$-$1$-structure. --- 中文摘要: 在不完备的金融市场中,并非每一项未定权益都可以通过自筹资金战略复制。由此产生的短缺风险可以通过凸风险度量来衡量,最近由F \\“ollmer,Schied(2002)提出。寻找使短缺凸风险最小化的自筹资金策略的动态优化问题可分为静态优化问题和表示问题。因此,最优策略包括对修改后的索赔$\\widetilde{\\varphi}H$,其中$H$是索赔的报酬,$\\widetilde{\\varphi}$是静态优化问题的解决方案,即最优随机测试。在本文中,我们将利用凸对偶方法推导静态问题的最优性的充要条件。静态优化问题的解决方案是一个具有典型$0$-$1$-结构的随机测试。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Mathematical Finance 数学金融学 分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods 金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明