搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  Discrete_Wavelet_Transform-Based_Prediction_of_Stock_Index:_A_Study_on_National_.pdf
资料下载链接地址: https://bbs.pinggu.org/a-3689677.html
附件大小:
英文标题:
《Discrete Wavelet Transform-Based Prediction of Stock Index: A Study on
National Stock Exchange Fifty Index》
---
作者:
Dhanya Jothimani, Ravi Shankar, Surendra S. Yadav
---
最新提交年份:
2016
---
英文摘要:
Financial Times Series such as stock price and exchange rates are, often, non-linear and non-stationary. Use of decomposition models has been found to improve the accuracy of predictive models. The paper proposes a hybrid approach integrating the advantages of both decomposition model (namely, Maximal Overlap Discrete Wavelet Transform (MODWT)) and machine learning models (ANN and SVR) to predict the National Stock Exchange Fifty Index. In first phase, the data is decomposed into a smaller number of subseries using MODWT. In next phase, each subseries is predicted using machine learning models (i.e., ANN and SVR). The predicted subseries are aggregated to obtain the final forecasts. In final stage, the effectiveness of the proposed approach is evaluated using error measures and statistical test. The proposed methods (MODWT-ANN and MODWT-SVR) are compared with ANN and SVR models and, it was observed that the return on investment obtained based on trading rules using predicted values of MODWT-SVR model was higher than that of Buy-and-hold strategy.
---
中文摘要:
《金融时报》的股票价格和汇率等系列通常是非线性和非平稳的。已发现使用分解模型可以提高预测模型的准确性。本文提出了一种融合分解模型(即最大重叠离散小波变换(MODWT))和机器学习模型(ANN和SVR)优点的混合方法来预测全国证券交易所50指数。在第一阶段,使用MODWT将数据分解为数量较少的子序列。在下一阶段,使用机器学习模型(即ANN和SVR)预测每个子序列。对预测的子系列进行聚合,以获得最终预测。在最后阶段,使用误差度量和统计测试来评估所提出方法的有效性。将所提出的方法(MODWT-ANN和MODWT-SVR)与ANN和SVR模型进行比较,发现基于交易规则使用MODWT-SVR模型的预测值获得的投资回报高于买入持有策略。
---
分类信息:

一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--

---
PDF下载:
-->


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-1 10:15