| 所在主题: | |
| 文件名: Efficient_Valuation_of_SCR_via_a_Neural_Network_Approach.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3690268.html | |
| 附件大小: | |
|
英文标题:
《Efficient Valuation of SCR via a Neural Network Approach》 --- 作者: Seyed Amir Hejazi, Kenneth R. Jackson --- 最新提交年份: 2016 --- 英文摘要: As part of the new regulatory framework of Solvency II, introduced by the European Union, insurance companies are required to monitor their solvency by computing a key risk metric called the Solvency Capital Requirement (SCR). The official description of the SCR is not rigorous and has lead researchers to develop their own mathematical frameworks for calculation of the SCR. These frameworks are complex and are difficult to implement. Recently, Bauer et al. suggested a nested Monte Carlo (MC) simulation framework to calculate the SCR. But the proposed MC framework is computationally expensive even for a simple insurance product. In this paper, we propose incorporating a neural network approach into the nested simulation framework to significantly reduce the computational complexity in the calculation. We study the performance of our neural network approach in estimating the SCR for a large portfolio of an important class of insurance products called Variable Annuities (VAs). Our experiments show that the proposed neural network approach is both efficient and accurate. --- 中文摘要: 作为欧盟推出的偿付能力II新监管框架的一部分,保险公司需要通过计算一个称为偿付能力资本要求(SCR)的关键风险指标来监控其偿付能力。官方对SCR的描述并不严格,导致研究人员开发了自己的计算SCR的数学框架。这些框架很复杂,很难实现。最近,Bauer等人提出了一种嵌套蒙特卡罗(MC)模拟框架来计算SCR。但是,即使对于一个简单的保险产品,提出的MC框架在计算上也很昂贵。在本文中,我们建议将神经网络方法合并到嵌套模拟框架中,以显著降低计算中的计算复杂性。我们研究了神经网络方法在估计一类重要的保险产品(称为可变年金(VAs))的大型投资组合的SCR时的性能。我们的实验表明,所提出的神经网络方法是有效和准确的。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明