搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  Model-free_bounds_on_Value-at-Risk_using_extreme_value_information_and_statistic.pdf
资料下载链接地址: https://bbs.pinggu.org/a-3691143.html
附件大小:
258.52 KB   举报本内容
英文标题:
《Model-free bounds on Value-at-Risk using extreme value information and
statistical distances》
---
作者:
Thibaut Lux, Antonis Papapantoleon
---
最新提交年份:
2018
---
英文摘要:
We derive bounds on the distribution function, therefore also on the Value-at-Risk, of $\\varphi(\\mathbf X)$ where $\\varphi$ is an aggregation function and $\\mathbf X = (X_1,\\dots,X_d)$ is a random vector with known marginal distributions and partially known dependence structure. More specifically, we analyze three types of available information on the dependence structure: First, we consider the case where extreme value information, such as the distributions of partial minima and maxima of $\\mathbf X$, is available. In order to include this information in the computation of Value-at-Risk bounds, we utilize a reduction principle that relates this problem to an optimization problem over a standard Fr\\\'echet class, which can then be solved by means of the rearrangement algorithm or using analytical results. Second, we assume that the copula of $\\mathbf X$ is known on a subset of its domain, and finally we consider the case where the copula of $\\mathbf X$ lies in the vicinity of a reference copula as measured by a statistical distance. In order to derive Value-at-Risk bounds in the latter situations, we first improve the Fr\\\'echet--Hoeffding bounds on copulas so as to include this additional information on the dependence structure. Then, we translate the improved Fr\\\'echet--Hoeffding bounds to bounds on the Value-at-Risk using the so-called improved standard bounds. In numerical examples we illustrate that the additional information typically leads to a significant improvement of the bounds compared to the marginals-only case.
---
中文摘要:
我们推导了$\\varphi(\\mathbf X)$的分布函数的界,因此也推导了风险值的界,其中$\\varphi$是一个聚合函数,$\\mathbf X=(X_1,dots,X_d)$是一个具有已知边缘分布和部分已知依赖结构的随机向量。更具体地说,我们分析了依赖结构上的三种可用信息:首先,我们考虑了极值信息的情况,例如$\\mathbf X$的部分最小值和最大值的分布。为了在计算风险值边界时包含此信息,我们利用了一个简化原则,将此问题与标准Fr趶echet类上的优化问题联系起来,然后可以通过重排算法或使用分析结果来解决该问题。其次,我们假设$\\mathbf X$的copula在其域的子集上是已知的,最后我们考虑$\\mathbf X$的copula位于由统计距离测量的参考copula附近的情况。为了推导出后一种情况下的风险值界限,我们首先改进了copulas上的Fr?echet-hoefffding界限,以便包含关于依赖结构的额外信息。然后,我们使用所谓的改进标准边界,将改进的Fr\\echet-hoeffing边界转换为风险值的边界。在数值例子中,我们说明了与仅边缘情况相比,附加信息通常会导致边界的显著改进。
---
分类信息:

一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--

---
PDF下载:
-->


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-30 06:11