| 所在主题: | |
| 文件名: Smallest_order_closed_sublattices_and_option_spanning.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3693711.html | |
| 附件大小: | |
|
英文标题:
《Smallest order closed sublattices and option spanning》 --- 作者: Niushan Gao, Denny H. Leung --- 最新提交年份: 2017 --- 英文摘要: Let $Y$ be a sublattice of a vector lattice $X$. We consider the problem of identifying the smallest order closed sublattice of $X$ containing $Y$. It is known that the analogy with topological closure fails. Let $\\overline{Y}^o$ be the order closure of $Y$ consisting of all order limits of nets of elements from $Y$. Then $\\overline{Y}^o$ need not be order closed. We show that in many cases the smallest order closed sublattice containing $Y$ is in fact the second order closure $\\overline{\\overline{Y}^o}^o$. Moreover, if $X$ is a $\\sigma$-order complete Banach lattice, then the condition that $\\overline{Y}^o$ is order closed for every sublattice $Y$ characterizes order continuity of the norm of $X$. The present paper provides a general approach to a fundamental result in financial economics concerning the spanning power of options written on a financial asset. --- 中文摘要: 设$Y$是向量格$X$的子格。我们考虑了识别包含$Y$的$X$最小阶闭子格的问题。众所周知,拓扑闭包的类比是失败的。设$\\ overline{Y}^o$为$Y$的订单闭包,由$Y$中元素网络的所有订单限制组成。那么$\\第{Y}^行上的$^ o$就不需要关闭订单。我们表明,在许多情况下,包含$Y$的最小阶闭子格实际上是二阶闭包$\\ overline{\\ overline{Y}^o}^o$。此外,如果$X$是$\\ sigma$序完备Banach格,那么$\\ overline{Y}^o$对于每个子格$Y$是序闭的条件刻画了$X$范数的序连续性。本文提供了金融经济学关于金融资产期权跨越能力的基本结果的一般方法。 --- 分类信息: 一级分类:Mathematics 数学 二级分类:Functional Analysis 功能分析 分类描述:Banach spaces, function spaces, real functions, integral transforms, theory of distributions, measure theory Banach空间,函数空间,实函数,积分变换,分布理论,测度理论 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Mathematical Finance 数学金融学 分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods 金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明