| 所在主题: | |
| 文件名: Learning_Agents_in_Black-Scholes_Financial_Markets:_Consensus_Dynamics_and_Volat.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3693814.html | |
| 附件大小: | |
|
英文标题:
《Learning Agents in Black-Scholes Financial Markets: Consensus Dynamics and Volatility Smiles》 --- 作者: Tushar Vaidya and Carlos Murguia and Georgios Piliouras --- 最新提交年份: 2020 --- 英文摘要: Black-Scholes (BS) is the standard mathematical model for option pricing in financial markets. Option prices are calculated using an analytical formula whose main inputs are strike (at which price to exercise) and volatility. The BS framework assumes that volatility remains constant across all strikes, however, in practice it varies. How do traders come to learn these parameters? We introduce natural models of learning agents, in which they update their beliefs about the true implied volatility based on the opinions of other traders. We prove convergence of these opinion dynamics using techniques from control theory and leader-follower models, thus providing a resolution between theory and market practices. We allow for two different models, one with feedback and one with an unknown leader. --- 中文摘要: Black-Scholes(BS)是金融市场期权定价的标准数学模型。期权价格使用一个分析公式进行计算,该公式的主要输入是履约(行使价格)和波动率。BS框架假设所有罢工期间的波动性保持不变,但在实践中有所不同。交易者是如何学习这些参数的?我们引入了学习主体的自然模型,在该模型中,学习主体根据其他交易者的意见更新其对真实隐含波动率的信念。我们使用控制理论和领导者-追随者模型的技术证明了这些意见动态的收敛性,从而提供了理论和市场实践之间的解决方案。我们考虑了两种不同的模型,一种是反馈模型,另一种是未知领导者模型。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Mathematical Finance 数学金融学 分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods 金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法 -- 一级分类:Computer Science 计算机科学 二级分类:Machine Learning 机器学习 分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods. 关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。 -- 一级分类:Computer Science 计算机科学 二级分类:Multiagent Systems 多智能体系统 分类描述:Covers multiagent systems, distributed artificial intelligence, intelligent agents, coordinated interactions. and practical applications. Roughly covers ACM Subject Class I.2.11. 涵盖多Agent系统、分布式人工智能、智能Agent、协调交互。和实际应用。大致涵盖ACM科目I.2.11类。 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明