| 所在主题: | |
| 文件名: Optimal_stopping_and_a_non-zero-sum_Dynkin_game_in_discrete_time_with_risk_measu.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3693942.html | |
| 附件大小: | |
|
英文标题:
《Optimal stopping and a non-zero-sum Dynkin game in discrete time with risk measures induced by BSDEs》 --- 作者: Miryana Grigorova, Marie-Claire Quenez (LPMA) --- 最新提交年份: 2017 --- 英文摘要: We first study an optimal stopping problem in which a player (an agent) uses a discrete stopping time in order to stop optimally a payoff process whose risk is evaluated by a (non-linear) $g$-expectation. We then consider a non-zero-sum game on discrete stopping times with two agents who aim at minimizing their respective risks. The payoffs of the agents are assessed by g-expectations (with possibly different drivers for the different players). By using the results of the first part, combined with some ideas of S. Hamad{\\`e}ne and J. Zhang, we construct a Nash equilibrium point of this game by a recursive procedure. Our results are obtained in the case of a standard Lipschitz driver $g$ without any additional assumption on the driver besides that ensuring the monotonicity of the corresponding $g$-expectation. --- 中文摘要: 我们首先研究了一个最优停止问题,其中一个参与者(一个代理)使用一个离散的停止时间来最优地停止一个支付过程,该过程的风险由一个(非线性)g$-期望来评估。然后,我们考虑一个关于离散停止时间的非零和博弈,两个代理的目标是最小化各自的风险。代理人的报酬由g-期望进行评估(不同的参与者可能有不同的驱动因素)。利用第一部分的结果,结合S.Hamad{` e}ne和J.Zhang的一些思想,我们通过递归过程构造了该博弈的纳什均衡点。我们的结果是在标准Lipschitz驱动程序$g$的情况下得到的,除了确保相应的$g$-期望的单调性外,没有对驱动程序进行任何额外的假设。 --- 分类信息: 一级分类:Mathematics 数学 二级分类:Probability 概率 分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory 概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Risk Management 风险管理 分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications 衡量和管理贸易、银行、保险、企业和其他应用中的金融风险 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明