| 所在主题: | |
| 文件名: Strong_convergence_rates_for_Euler_approximations_to_a_class_of_stochastic_path-.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3694517.html | |
| 附件大小: | |
|
英文标题:
《Strong convergence rates for Euler approximations to a class of stochastic path-dependent volatility models》 --- 作者: Andrei Cozma and Christoph Reisinger --- 最新提交年份: 2018 --- 英文摘要: We consider a class of stochastic path-dependent volatility models where the stochastic volatility, whose square follows the Cox-Ingersoll-Ross model, is multiplied by a (leverage) function of the spot price, its running maximum, and time. We propose a Monte Carlo simulation scheme which combines a log-Euler scheme for the spot process with the full truncation Euler scheme or the backward Euler-Maruyama scheme for the squared stochastic volatility component. Under some mild regularity assumptions and a condition on the Feller ratio, we establish the strong convergence with order 1/2 (up to a logarithmic factor) of the approximation process up to a critical time. The model studied in this paper contains as special cases Heston-type stochastic-local volatility models, the state-of-the-art in derivative pricing, and a relatively new class of path-dependent volatility models. The present paper is the first to prove the convergence of the popular Euler schemes with a positive rate, which is moreover consistent with that for Lipschitz coefficients and hence optimal. --- 中文摘要: 我们考虑一类随机路径相关波动率模型,其中随机波动率的平方遵循Cox-Ingersoll-Ross模型,乘以现货价格、其运行最大值和时间的杠杆函数。我们提出了一种蒙特卡罗模拟方案,该方案将用于现货过程的对数欧拉方案与用于平方随机波动率分量的全截断欧拉方案或向后欧拉丸山方案相结合。在一些温和的正则性假设和Feller比率的条件下,我们建立了逼近过程在临界时间内的1/2阶(达对数因子)强收敛性。本文研究的模型作为特例包含赫斯顿型随机局部波动率模型、衍生品定价的最新技术以及一类相对较新的路径依赖波动率模型。本文首次证明了流行的Euler格式的正速度收敛性,并且与Lipschitz系数的收敛性一致,因此是最优的。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明