| 所在主题: | |
| 文件名: Analytical_and_numerical_results_for_American_style_of_perpetual_put_options_thr.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3694543.html | |
| 附件大小: | |
|
英文标题:
《Analytical and numerical results for American style of perpetual put options through transformation into nonlinear stationary Black-Scholes equations》 --- 作者: Maria do Rosario Grossinho, Yaser Faghan Kord, Daniel Sevcovic --- 最新提交年份: 2017 --- 英文摘要: We analyze and calculate the early exercise boundary for a class of stationary generalized Black-Scholes equations in which the volatility function depends on the second derivative of the option price itself. A motivation for studying the nonlinear Black Scholes equation with a nonlinear volatility arises from option pricing models including, e.g., non-zero transaction costs, investors preferences, feedback and illiquid markets effects and risk from unprotected portfolio. We present a method how to transform the problem of American style of perpetual put options into a solution of an ordinary differential equation and implicit equation for the free boundary position. We finally present results of numerical approximation of the early exercise boundary, option price and their dependence on model parameters. --- 中文摘要: 我们分析并计算了一类平稳广义Black-Scholes方程的早期行权边界,其中波动率函数依赖于期权价格本身的二阶导数。研究具有非线性波动率的非线性Black-Scholes方程的动机来自期权定价模型,包括非零交易成本、投资者偏好、反馈和非流动市场效应以及无保护投资组合的风险。我们提出了一种方法,将美式永久看跌期权问题转化为自由边界位置的常微分方程和隐式方程的解。最后,我们给出了早期行使边界、期权价格及其对模型参数依赖性的数值近似结果。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明