| 所在主题: | |
| 文件名: Dynamic_Quantile_Function_Models.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3694563.html | |
| 附件大小: | |
|
英文标题:
《Dynamic Quantile Function Models》 --- 作者: Wilson Ye Chen, Gareth W. Peters, Richard H. Gerlach, Scott A. Sisson --- 最新提交年份: 2021 --- 英文摘要: Motivated by the need for effectively summarising, modelling, and forecasting the distributional characteristics of intra-daily returns, as well as the recent work on forecasting histogram-valued time-series in the area of symbolic data analysis, we develop a time-series model for forecasting quantile-function-valued (QF-valued) daily summaries for intra-daily returns. We call this model the dynamic quantile function (DQF) model. Instead of a histogram, we propose to use a $g$-and-$h$ quantile function to summarise the distribution of intra-daily returns. We work with a Bayesian formulation of the DQF model in order to make statistical inference while accounting for parameter uncertainty; an efficient MCMC algorithm is developed for sampling-based posterior inference. Using ten international market indices and approximately 2,000 days of out-of-sample data from each market, the performance of the DQF model compares favourably, in terms of forecasting VaR of intra-daily returns, against the interval-valued and histogram-valued time-series models. Additionally, we demonstrate that the QF-valued forecasts can be used to forecast VaR measures at the daily timescale via a simple quantile regression model on daily returns (QR-DQF). In certain markets, the resulting QR-DQF model is able to provide competitive VaR forecasts for daily returns. --- 中文摘要: 出于有效总结、建模和预测日内收益分布特征的需要,以及最近在符号数据分析领域预测直方图值时间序列的工作,我们开发了一个用于预测分位数函数值(QF值)日内收益总结的时间序列模型。我们将此模型称为动态分位数函数(DQF)模型。我们建议使用$g$和$h$分位数函数来总结日内收益的分布,而不是直方图。我们使用DQF模型的贝叶斯公式,以便在考虑参数不确定性的同时进行统计推断;针对基于采样的后验推理,提出了一种高效的MCMC算法。使用10个国际市场指数和每个市场大约2000天的样本外数据,DQF模型在预测日内收益的VaR方面,与区间值和柱状图值时间序列模型相比,表现良好。此外,我们还证明了QF值预测可以通过一个简单的日收益分位数回归模型(QR-DQF)在每日时间尺度上预测VaR度量。在某些市场,由此产生的QR-DQF模型能够为每日回报提供有竞争力的VaR预测。 --- 分类信息: 一级分类:Statistics 统计学 二级分类:Methodology 方法论 分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods 设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Risk Management 风险管理 分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications 衡量和管理贸易、银行、保险、企业和其他应用中的金融风险 -- 一级分类:Statistics 统计学 二级分类:Applications 应用程序 分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences 生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明