《Dynamic Quantile Function Models》
---
作者:
Wilson Ye Chen, Gareth W. Peters, Richard H. Gerlach, Scott A. Sisson
---
最新提交年份:
2021
---
英文摘要:
Motivated by the need for effectively summarising, modelling, and forecasting the distributional characteristics of intra-daily returns, as well as the recent work on forecasting histogram-valued time-series in the area of symbolic data analysis, we develop a time-series model for forecasting quantile-function-valued (QF-valued) daily summaries for intra-daily returns. We call this model the dynamic quantile function (DQF) model. Instead of a histogram, we propose to use a $g$-and-$h$ quantile function to summarise the distribution of intra-daily returns. We work with a Bayesian formulation of the DQF model in order to make statistical inference while accounting for parameter uncertainty; an efficient MCMC algorithm is developed for sampling-based posterior inference. Using ten international market indices and approximately 2,000 days of out-of-sample data from each market, the performance of the DQF model compares favourably, in terms of forecasting VaR of intra-daily returns, against the interval-valued and histogram-valued time-series models. Additionally, we demonstrate that the QF-valued forecasts can be used to forecast VaR measures at the daily timescale via a simple quantile regression model on daily returns (QR-DQF). In certain markets, the resulting QR-DQF model is able to provide competitive VaR forecasts for daily returns.
---
中文摘要:
出于有效总结、建模和预测日内收益分布特征的需要,以及最近在符号数据分析领域预测直方图值时间序列的工作,我们开发了一个用于预测分位数函数值(QF值)日内收益总结的时间序列模型。我们将此模型称为动态分位数函数(DQF)模型。我们建议使用$g$和$h$分位数函数来总结日内收益的分布,而不是直方图。我们使用DQF模型的贝叶斯公式,以便在考虑参数不确定性的同时进行统计推断;针对基于采样的后验推理,提出了一种高效的MCMC算法。使用10个国际市场指数和每个市场大约2000天的样本外数据,DQF模型在预测日内收益的VaR方面,与区间值和柱状图值时间序列模型相比,表现良好。此外,我们还证明了QF值预测可以通过一个简单的日收益分位数回归模型(QR-DQF)在每日时间尺度上预测VaR度量。在某些市场,由此产生的QR-DQF模型能够为每日回报提供有竞争力的VaR预测。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
PDF下载:
-->
Dynamic_Quantile_Function_Models.pdf
(4.51 MB)


雷达卡



京公网安备 11010802022788号







