搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  Residual_Value_Forecasting_Using_Asymmetric_Cost_Functions.pdf
资料下载链接地址: https://bbs.pinggu.org/a-3694564.html
附件大小:
531.57 KB   举报本内容
英文标题:
《Residual Value Forecasting Using Asymmetric Cost Functions》
---
作者:
Korbinian Dress, Stefan Lessmann, Hans-J\\\"org von Mettenheim
---
最新提交年份:
2017
---
英文摘要:
Leasing is a popular channel to market new cars. Pricing a leasing contract is complicated because the leasing rate embodies an expectation of the residual value of the car after contract expiration. To aid lessors in their pricing decisions, the paper develops resale price forecasting models. A peculiarity of the leasing business is that forecast errors entail different costs. Identifying effective ways to address this characteristic is the main objective of the paper. More specifically, the paper contributes to the literature through i) consolidating and integrating previous work in forecasting with asymmetric cost of error functions, ii) systematically evaluating previous approaches and comparing them to a new approach, and iii) demonstrating that forecasting with asymmetric cost of error functions enhances the quality of decision support in car leasing. For example, under the assumption that the costs of overestimating resale prices is twice that of the opposite error, incorporating corresponding cost asymmetry into forecast model development reduces decision costs by about eight percent, compared to a standard forecasting model. Higher asymmetry produces even larger improvements.
---
中文摘要:
租赁是销售新车的热门渠道。租赁合同的定价很复杂,因为租赁率体现了对合同到期后汽车剩余价值的预期。为了帮助出租人做出定价决策,本文建立了转售价格预测模型。租赁业务的一个特点是,预测误差会导致不同的成本。确定解决这一特点的有效方法是本文的主要目标。更具体地说,本文通过i)巩固和整合先前在预测方面的工作与不对称误差成本函数,ii)系统地评估先前的方法并将其与新方法进行比较,以及iii)证明使用不对称误差成本函数进行预测可提高汽车租赁决策支持的质量,从而为文献做出贡献。例如,假设高估转售价格的成本是相反误差的两倍,将相应的成本不对称纳入预测模型开发,与标准预测模型相比,可将决策成本降低约8%。更高的不对称性会产生更大的改善。
---
分类信息:

一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--

---
PDF下载:
-->


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-10 16:52