| 所在主题: | |
| 文件名: Sampling_of_probability_measures_in_the_convex_order_by_Wasserstein_projection.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3694763.html | |
| 附件大小: | |
|
英文标题:
《Sampling of probability measures in the convex order by Wasserstein projection》 --- 作者: Aur\\\'elien Alfonsi, Jacopo Corbetta and Benjamin Jourdain --- 最新提交年份: 2019 --- 英文摘要: In this paper, for $\\mu$ and $\\nu$ two probability measures on $\\mathbb{R}^d$ with finite moments of order $\\rho\\ge 1$, we define the respective projections for the $W_\\rho$-Wasserstein distance of $\\mu$ and $\\nu$ on the sets of probability measures dominated by $\\nu$ and of probability measures larger than $\\mu$ in the convex order. The $W_2$-projection of $\\mu$ can be easily computed when $\\mu$ and $\\nu$ have finite support by solving a quadratic optimization problem with linear constraints. In dimension $d=1$, Gozlan et al.~(2018) have shown that the projections do not depend on $\\rho$. We explicit their quantile functions in terms of those of $\\mu$ and $\\nu$. The motivation is the design of sampling techniques preserving the convex order in order to approximate Martingale Optimal Transport problems by using linear programming solvers. We prove convergence of the Wasserstein projection based sampling methods as the sample sizes tend to infinity and illustrate them by numerical experiments. --- 中文摘要: 本文中,对于$\\mu$和$\\nu$两个在$\\mathbb{R}^d$上具有$\\rho\\ge 1$阶有限矩的概率测度,我们定义了$\\mu$和$\\nu$的$\\W\\rho$-Wasserstein距离在$\\nu$支配的概率测度集和凸阶大于$\\mu$的概率测度集上的相应投影。当$\\ mu$和$\\ nu$具有有限的支持度时,通过求解具有线性约束的二次优化问题,可以很容易地计算$\\ mu$的$\\ W\\u 2$-投影。在维度$d=1$中,Gozlan et al.(2018)表明预测不依赖于$\\ rho$。我们用$\\ mu$和$\\ nu$的分位数函数来表示它们的分位数函数。其动机是设计保持凸序的采样技术,以便使用线性规划求解器逼近鞅最优运输问题。当样本量趋于无穷大时,我们证明了基于Wasserstein投影的采样方法的收敛性,并通过数值实验加以说明。 --- 分类信息: 一级分类:Mathematics 数学 二级分类:Probability 概率 分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory 概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明