| 所在主题: | |
| 文件名: The_Chebyshev_method_for_the_implied_volatility.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3694920.html | |
| 附件大小: | |
|
英文标题:
《The Chebyshev method for the implied volatility》 --- 作者: Kathrin Glau, Paul Herold, Dilip B. Madan, Christian P\\\"otz --- 最新提交年份: 2017 --- 英文摘要: The implied volatility is a crucial element of any financial toolbox, since it is used for quoting and the hedging of options as well as for model calibration. In contrast to the Black-Scholes formula its inverse, the implied volatility, is not explicitly available and numerical approximation is required. We propose a bivariate interpolation of the implied volatility surface based on Chebyshev polynomials. This yields a closed-form approximation of the implied volatility, which is easy to implement and to maintain. We prove a subexponential error decay. This allows us to obtain an accuracy close to machine precision with polynomials of a low degree. We compare the performance of the method in terms of runtime and accuracy to the most common reference methods. In contrast to existing interpolation methods, the proposed method is able to compute the implied volatility for all relevant option data. In this context, numerical experiments confirm a considerable increase in efficiency, especially for large data sets. --- 中文摘要: 隐含波动率是任何金融工具箱的关键元素,因为它用于期权报价和对冲以及模型校准。与布莱克-斯科尔斯公式相反,它的反比,即隐含波动率,并不明确可用,需要数值近似。我们提出了一种基于切比雪夫多项式的隐含波动率曲面的二元插值方法。这产生了隐含波动率的闭合形式近似值,易于实施和维护。我们证明了一个次指数误差衰减。这使我们能够使用低阶多项式获得接近机器精度的精度。我们将该方法在运行时间和准确性方面的性能与最常见的参考方法进行了比较。与现有的插值方法相比,该方法能够计算所有相关期权数据的隐含波动率。在这种情况下,数值实验证实了效率的显著提高,尤其是对于大型数据集。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明