| 所在主题: | |
| 文件名: Large_deviation_principle_for_Volterra_type_fractional_stochastic_volatility_models.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3695041.html | |
| 附件大小: | |
|
英文标题:
《Large deviation principle for Volterra type fractional stochastic volatility models》 --- 作者: Archil Gulisashvili --- 最新提交年份: 2018 --- 英文摘要: We study fractional stochastic volatility models in which the volatility process is a positive continuous function $\\sigma$ of a continuous Gaussian process $\\widehat{B}$. Forde and Zhang established a large deviation principle for the log-price process in such a model under the assumptions that the function $\\sigma$ is globally H\\\"{o}lder-continuous and the process $\\widehat{B}$ is fractional Brownian motion. In the present paper, we prove a similar small-noise large deviation principle under weaker restrictions on $\\sigma$ and $\\widehat{B}$. We assume that $\\sigma$ satisfies a mild local regularity condition, while the process $\\widehat{B}$ is a Volterra type Gaussian process. Under an additional assumption of the self-similarity of the process $\\widehat{B}$, we derive a large deviation principle in the small-time regime. As an application, we obtain asymptotic formulas for binary options, call and put pricing functions, and the implied volatility in certain mixed regimes. --- 中文摘要: 我们研究了分数阶随机波动率模型,其中波动率过程是连续高斯过程的正连续函数$\\ sigma$。Forde和Zhang在这样一个模型中建立了对数价格过程的大偏差原理,假设函数$\\ sigma$是全局H{o}lder连续的,过程$\\ widehat{B}$是分数布朗运动。本文在$\\ sigma$和$\\ widehat{B}较弱的限制下,证明了类似的小噪声大偏差原理$. 我们假设$\\ sigma$满足一个温和的局部正则条件,而过程$\\ widehat{B}$是一个Volterra型高斯过程。在过程$\\widehat{B}的自相似性的另一个假设下,我们导出了小时间范围内的大偏差原理。作为应用,我们得到了二元期权、看涨期权和看跌期权定价函数的渐近公式,以及某些混合制度下的隐含波动率。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Mathematical Finance 数学金融学 分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods 金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明