搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  A_continuous_selection_for_optimal_portfolios_under_convex_risk_measures_does_no.pdf
资料下载链接地址: https://bbs.pinggu.org/a-3695075.html
附件大小:
216.75 KB   举报本内容
英文标题:
《A continuous selection for optimal portfolios under convex risk measures
does not always exist》
---
作者:
Michel Baes, Cosimo Munari
---
最新提交年份:
2017
---
英文摘要:
One of the crucial problems in mathematical finance is to mitigate the risk of a financial position by setting up hedging positions of eligible financial securities. This leads to focusing on set-valued maps associating to any financial position the set of those eligible payoffs that reduce the risk of the position to a target acceptable level at the lowest possible cost. Among other properties of such maps, the ability to ensure lower semicontinuity and continuous selections is key from an operational perspective. It is known that lower semicontinuity generally fails in an infinite-dimensional setting. In this note we show that neither lower semicontinuity nor, more surprisingly, the existence of continuous selections can be a priori guaranteed even in a finite-dimensional setting. In particular, this failure is possible under arbitrage-free markets and convex risk measures.
---
中文摘要:
数学金融学中的一个关键问题是通过建立合格金融证券的对冲头寸来降低金融头寸的风险。这就需要关注与任何财务状况相关的集值映射,即以尽可能低的成本将头寸风险降低到目标可接受水平的合格回报集。在这些映射的其他属性中,从操作角度来看,确保低半连续性和连续选择的能力是关键。众所周知,下半连续性通常在无限维环境中失效。在本文中,我们证明了即使在有限维环境中,也不能先验地保证下半连续性,更令人惊讶的是,连续选择的存在性。特别是,在无套利市场和凸风险度量下,这种失败是可能的。
---
分类信息:

一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--

---
PDF下载:
-->


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-2 10:39