| 所在主题: | |
| 文件名: Probability_measure-valued_polynomial_diffusions.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3701028.html | |
| 附件大小: | |
|
英文标题:
《Probability measure-valued polynomial diffusions》 --- 作者: Christa Cuchiero, Martin Larsson, Sara Svaluto-Ferro --- 最新提交年份: 2018 --- 英文摘要: We introduce a class of probability measure-valued diffusions, coined polynomial, of which the well-known Fleming--Viot process is a particular example. The defining property of finite dimensional polynomial processes considered by Cuchiero et al. (2012) and Filipovic and Larsson (2016) is transferred to this infinite dimensional setting. This leads to a representation of conditional marginal moments via a finite dimensional linear PDE, whose spatial dimension corresponds to the degree of the moment. As a result, the tractability of finite dimensional polynomial processes are preserved in this setting. We also obtain a representation of the corresponding extended generators, and prove well-posedness of the associated martingale problems. In particular, uniqueness is obtained from the duality relationship with the PDEs mentioned above. --- 中文摘要: 我们引入了一类概率测度值扩散,即多项式,其中著名的Fleming-Viot过程就是一个特例。Cuchiero et al.(2012)和Filipovic and Larsson(2016)所考虑的有限维多项式过程的定义性质被转移到这个无限维环境中。这导致通过有限维线性偏微分方程表示条件边际矩,其空间维度对应于矩的阶数。因此,有限维多项式过程的可处理性在此设置中得以保持。我们还得到了相应扩展生成元的一个表示,并证明了相关鞅问题的适定性。特别地,唯一性是从与上述偏微分方程的对偶关系中获得的。 --- 分类信息: 一级分类:Mathematics 数学 二级分类:Probability 概率 分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory 概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Mathematical Finance 数学金融学 分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods 金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明