| 所在主题: | |
| 文件名: Leave-One-Out_Least_Square_Monte_Carlo_Algorithm_for_Pricing_American_Options.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3701533.html | |
| 附件大小: | |
|
英文标题:
《Leave-One-Out Least Square Monte Carlo Algorithm for Pricing American Options》 --- 作者: Jeechul Woo, Chenru Liu, Jaehyuk Choi --- 最新提交年份: 2020 --- 英文摘要: The least square Monte Carlo (LSM) algorithm proposed by Longstaff and Schwartz (2001) is widely used for pricing American options. The LSM estimator contains undesirable look-ahead bias, and the conventional technique of removing it necessitates doubling simulations. We present the leave-one-out LSM (LOOLSM) algorithm for efficiently eliminating look-ahead bias. We also show that look-ahead bias is asymptotically proportional to the regressors-to-simulation paths ratio. Our findings are demonstrated with several option examples, including the multi-asset cases that the LSM algorithm significantly overvalues. The LOOLSM method can be extended to other regression-based algorithms improving the LSM method. --- 中文摘要: Longstaff和Schwartz(2001)提出的最小二乘蒙特卡罗(LSM)算法被广泛用于美式期权定价。LSM估计器包含不希望的前瞻偏差,而消除该偏差的传统技术需要加倍模拟。为了有效地消除前瞻性偏差,我们提出了一种留一LSM(LOOLSM)算法。我们还表明,前瞻偏差与回归器与模拟路径的比率渐近成正比。我们的发现通过几个选项示例进行了演示,包括LSM算法明显高估的多资产案例。LOOLSM方法可以扩展到其他基于回归的算法,以改进LSM方法。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Mathematical Finance 数学金融学 分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods 金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法 -- 一级分类:Statistics 统计学 二级分类:Machine Learning 机器学习 分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding 覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明