搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  Determination_of_the_Lévy_Exponent_in_Asset_Pricing_Models.pdf
资料下载链接地址: https://bbs.pinggu.org/a-3701693.html
附件大小:
214.69 KB   举报本内容
英文标题:
《Determination of the L\\\'evy Exponent in Asset Pricing Models》
---
作者:
George Bouzianis, Lane Hughston
---
最新提交年份:
2019
---
英文摘要:
We consider the problem of determining the L\\\'evy exponent in a L\\\'evy model for asset prices given the price data of derivatives. The model, formulated under the real-world measure $\\mathbb P$, consists of a pricing kernel $\\{\\pi_t\\}_{t\\geq0}$ together with one or more non-dividend-paying risky assets driven by the same L\\\'evy process. If $\\{S_t\\}_{t\\geq0}$ denotes the price process of such an asset then $\\{\\pi_t S_t\\}_{t\\geq0}$ is a $\\mathbb P$-martingale. The L\\\'evy process $\\{ \\xi_t \\}_{t\\geq0}$ is assumed to have exponential moments, implying the existence of a L\\\'evy exponent $\\psi(\\alpha) = t^{-1}\\log \\mathbb E(\\rm e^{\\alpha \\xi_t})$ for $\\alpha$ in an interval $A \\subset \\mathbb R$ containing the origin as a proper subset. We show that if the initial prices of power-payoff derivatives, for which the payoff is $H_T = (\\zeta_T)^q$ for some time $T>0$, are given for a range of values of $q$, where $\\{\\zeta_t\\}_{t\\geq0}$ is the so-called benchmark portfolio defined by $\\zeta_t = 1/\\pi_t$, then the L\\\'evy exponent is determined up to an irrelevant linear term. In such a setting, derivative prices embody complete information about price jumps: in particular, the spectrum of the price jumps can be worked out from current market prices of derivatives. More generally, if $H_T = (S_T)^q$ for a general non-dividend-paying risky asset driven by a L\\\'evy process, and if we know that the pricing kernel is driven by the same L\\\'evy process, up to a factor of proportionality, then from the current prices of power-payoff derivatives we can infer the structure of the L\\\'evy exponent up to a transformation $\\psi(\\alpha) \\rightarrow \\psi(\\alpha + \\mu) - \\psi(\\mu) + c \\alpha$, where $c$ and $\\mu$ are constants.
---
中文摘要:
我们考虑在给定衍生品价格数据的情况下,在资产价格的利维模型中确定利维指数的问题。该模型是根据现实世界的度量值$\\mathbb P$制定的,由定价内核$\\{\\pi\\U t}\\UU{t\\geq0}$和一个或多个由相同的列维过程驱动的非股息支付风险资产组成。如果${S\\u t\\}u{t\\geq0}$表示此类资产的价格过程,则${\\pi\\u t S\\u t}u{t\\geq0}$是$\\mathbb P$-鞅。假设L砦vy过程$\\{\\xi\\u t}{\\t\\geq0}$具有指数矩,这意味着L砦vy指数$\\psi(\\alpha)=t ^{-1}\\log\\mathb E(\\rm E ^{\\alpha\\xi\\u t})$for$\\alpha$在包含原点作为适当子集的区间$\\subset\\mathb R$中存在。我们表明,如果给定了一系列价值为$q$的幂收益衍生工具的初始价格,其中$H\\u T=(\\zeta\\u T)^q$,一段时间$T>0$,其中${\\zeta\\u T}{T\\geq0}$是由$\\zeta\\u T=1/\\pi\\u T$定义的所谓基准投资组合,则L25vy指数确定为一个不相关的线性项。在这种情况下,衍生产品价格体现了价格跳跃的完整信息:特别是,价格跳跃的范围可以从衍生产品的当前市场价格计算出来。更一般地说,如果由Levy过程驱动的一般非股息支付风险资产为$H\\u T=(S\\T)^q$,并且如果我们知道定价内核由相同的Levy过程驱动,达到比例因子,然后,从电力收益衍生工具的当前价格中,我们可以推断出L’evy指数的结构,直至转换$\\ psi(\\ alpha)\\rightarrow\\psi(\\ alpha+\\ mu)-\\ psi(\\ mu)+c \\ alpha$,其中,$c$和$\\ mu$是常数。
---
分类信息:

一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--

---
PDF下载:
-->


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-9 23:09