| 所在主题: | |
| 文件名: Portfolio_Optimization_for_Cointelated_Pairs:_SDEs_vs._Machine_Learning.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3701814.html | |
| 附件大小: | |
|
英文标题:
《Portfolio Optimization for Cointelated Pairs: SDEs vs. Machine Learning》 --- 作者: Babak Mahdavi-Damghani, Konul Mustafayeva, Stephen Roberts, Cristin Buescu --- 最新提交年份: 2019 --- 英文摘要: With the recent rise of Machine Learning as a candidate to partially replace classic Financial Mathematics methodologies, we investigate the performances of both in solving the problem of dynamic portfolio optimization in continuous-time, finite-horizon setting for a portfolio of two assets that are intertwined. In Financial Mathematics approach we model the asset prices not via the common approaches used in pairs trading such as a high correlation or cointegration, but with the cointelation model that aims to reconcile both short-term risk and long-term equilibrium. We maximize the overall P&L with Financial Mathematics approach that dynamically switches between a mean-variance optimal strategy and a power utility maximizing strategy. We use a stochastic control formulation of the problem of power utility maximization and solve numerically the resulting HJB equation with the Deep Galerkin method. We turn to Machine Learning for the same P&L maximization problem and use clustering analysis to devise bands, combined with in-band optimization. Although this approach is model agnostic, results obtained with data simulated from the same cointelation model as FM give an edge to ML. --- 中文摘要: 随着机器学习作为部分取代经典金融数学方法的候选者的兴起,我们研究了这两种方法在解决连续时间、有限时间内的动态投资组合优化问题方面的性能,这两种方法都适用于两种资产相互交织的投资组合。在金融数学方法中,我们不是通过配对交易中使用的常见方法(如高度相关性或协整)来建模资产价格,而是通过旨在协调短期风险和长期均衡的协整模型。我们使用金融数学方法最大化总体损益,该方法在均值-方差最优策略和电力效用最大化策略之间动态切换。我们使用电力效用最大化问题的随机控制公式,并用深伽辽金方法数值求解得到的HJB方程。我们转向机器学习来解决相同的损益最大化问题,并使用聚类分析来设计带,并结合带内优化。虽然这种方法是模型不可知的,但使用与FM相同的共同命名模型模拟的数据获得的结果为ML提供了优势。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Portfolio Management 项目组合管理 分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement 证券选择与优化、资本配置、投资策略与绩效评价 -- 一级分类:Statistics 统计学 二级分类:Machine Learning 机器学习 分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding 覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明