| 所在主题: | |
| 文件名: Low-rank_tensor_approximation_for_Chebyshev_interpolation_in_parametric_option_pricing.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3702181.html | |
| 附件大小: | |
|
英文标题:
《Low-rank tensor approximation for Chebyshev interpolation in parametric option pricing》 --- 作者: Kathrin Glau, Daniel Kressner, Francesco Statti --- 最新提交年份: 2019 --- 英文摘要: Treating high dimensionality is one of the main challenges in the development of computational methods for solving problems arising in finance, where tasks such as pricing, calibration, and risk assessment need to be performed accurately and in real-time. Among the growing literature addressing this problem, Gass et al. [14] propose a complexity reduction technique for parametric option pricing based on Chebyshev interpolation. As the number of parameters increases, however, this method is affected by the curse of dimensionality. In this article, we extend this approach to treat high-dimensional problems: Additionally exploiting low-rank structures allows us to consider parameter spaces of high dimensions. The core of our method is to express the tensorized interpolation in tensor train (TT) format and to develop an efficient way, based on tensor completion, to approximate the interpolation coefficients. We apply the new method to two model problems: American option pricing in the Heston model and European basket option pricing in the multi-dimensional Black-Scholes model. In these examples we treat parameter spaces of dimensions up to 25. The numerical results confirm the low-rank structure of these problems and the effectiveness of our method compared to advanced techniques. --- 中文摘要: 处理高维问题是开发用于解决金融问题的计算方法的主要挑战之一,在金融领域,定价、校准和风险评估等任务需要准确实时地执行。在不断增长的解决这一问题的文献中,Gass等人[14]提出了一种基于切比雪夫插值的参数期权定价复杂性降低技术。然而,随着参数数量的增加,这种方法会受到维数灾难的影响。在本文中,我们将此方法扩展到处理高维问题:此外,利用低秩结构可以考虑高维参数空间。该方法的核心是用张量序列(TT)格式表示张量化插值,并开发一种基于张量补全的有效方法来逼近插值系数。我们将新方法应用于两个模型问题:赫斯顿模型中的美式期权定价和多维Black-Scholes模型中的欧洲篮子期权定价。在这些示例中,我们处理维数高达25的参数空间。数值结果证实了这些问题的低阶结构以及我们的方法与先进技术相比的有效性。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明