| 所在主题: | |
| 文件名: Improving_Value-at-Risk_prediction_under_model_uncertainty.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3703572.html | |
| 附件大小: | |
|
英文标题:
《Improving Value-at-Risk prediction under model uncertainty》 --- 作者: Shige Peng, Shuzhen Yang and Jianfeng Yao --- 最新提交年份: 2020 --- 英文摘要: Several well-established benchmark predictors exist for Value-at-Risk (VaR), a major instrument for financial risk management. Hybrid methods combining AR-GARCH filtering with skewed-$t$ residuals and the extreme value theory-based approach are particularly recommended. This study introduces yet another VaR predictor, G-VaR, which follows a novel methodology. Inspired by the recent mathematical theory of sublinear expectation, G-VaR is built upon the concept of model uncertainty, which in the present case signifies that the inherent volatility of financial returns cannot be characterized by a single distribution but rather by infinitely many statistical distributions. By considering the worst scenario among these potential distributions, the G-VaR predictor is precisely identified. Extensive experiments on both the NASDAQ Composite Index and S\\&P500 Index demonstrate the excellent performance of the G-VaR predictor, which is superior to most existing benchmark VaR predictors. --- 中文摘要: 风险价值(VaR)是金融风险管理的一个主要工具,有几个成熟的基准预测因子。特别推荐将AR-GARCH滤波与倾斜残差和基于极值理论的方法相结合的混合方法。本研究引入了另一个VaR预测因子G-VaR,它采用了一种新的方法。受最新的次线性期望数学理论的启发,G-VaR建立在模型不确定性的概念上,在本案例中,这意味着财务回报的固有波动性不能由单一分布来表征,而是由无限多个统计分布来表征。通过考虑这些潜在分布中最坏的情况,可以精确地识别G-VaR预测值。在纳斯达克综合指数和S&P500指数上进行的大量实验表明,G-VaR预测器的性能优异,优于大多数现有的基准VaR预测器。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Risk Management 风险管理 分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications 衡量和管理贸易、银行、保险、企业和其他应用中的金融风险 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明