| 所在主题: | |
| 文件名: Incorporating_prior_financial_domain_knowledge_into_neural_networks_for_implied_.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3704116.html | |
| 附件大小: | |
|
英文标题:
《Incorporating prior financial domain knowledge into neural networks for implied volatility surface prediction》 --- 作者: Yu Zheng and Yongxin Yang and Bowei Chen --- 最新提交年份: 2021 --- 英文摘要: In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface. --- 中文摘要: 本文提出了一种新的神经网络模型来预测隐含波动率面。考虑到先前的金融领域知识。提出了一种新的包含波动率微笑的激活函数,用于处理标的资产价格的隐藏节点。此外,财务状况,如无套利、边界和渐近斜率,都嵌入到损失函数中。这是最早讨论将先前金融领域知识纳入神经网络架构设计和模型训练的方法框架的研究之一。在标普500指数20年的期权数据中,拟议模型的表现优于基准模型。更重要的是,领域知识在经验上得到了满足,表明该模型与现有的金融理论和与隐含波动率面相关的条件是一致的。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- 一级分类:Computer Science 计算机科学 二级分类:Machine Learning 机器学习 分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods. 关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。 -- 一级分类:Computer Science 计算机科学 二级分类:Neural and Evolutionary Computing 神经与进化计算 分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5. 涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明