| 所在主题: | |
| 文件名: maticalModelingStatisticalMethodsforRiskManagement.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-371040.html | |
| 附件大小: | |
|
Mathematical Modeling and Statistical Methods for Risk Management
Lecture Notes by Henrik Hult and Filip Lindskog Preface These lecture notes aims at giving an introduction to Quantitative Risk Management.We will introduce statistical techniques used for deriving the profit and-loss distribution for a portfolio of financial instruments and to compute risk measures associated with this distribution.The focus lies on the mathematical/ statistical modeling of market- and credit risk.Operational risk and the use of fnancial time series for risk modeling is not treated in these lecture notes. Financial institutions typically hold portfolios consisting on large number of financial instruments.A careful modeling of the dependence between these instruments is crucial for good risk management in these situations.A large part of these lecture notes is therefore devoted to the issue of dependence modeling. The reader is assumed to have a mathematical/statistical knowledge corresponding to basic courses in linear algebra, analysis, statistics and an intermediate course in probability.The lecture notes are written with the aim of presenting the material in a fairly rigorous way without any use of measure theory. Contents 1 Some background to nancial risk management 1 1.1 A preliminary example . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Why risk management? . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Regulators and supervisors . . . . . . . . . . . . . . . . . . . . . 3 1.4 Why the government cares about the bu er capital . . . . . . . . 4 1.5 Types of risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 Financial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Loss operators and nancial portfolios 6 2.1 Portfolios and the loss operator . . . . . . . . . . . . . . . . . . . 6 2.2 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Risk measurement 10 3.1 Elementary measures of risk . . . . . . . . . . . . . . . . . . . . . 10 3.2 Risk measures based on the loss distribution . . . . . . . . . . . . 12 4 Methods for computing VaR and ES 19 4.1 Empirical VaR and ES . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Con dence intervals . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2.1 Exact con dence intervals for Value-at-Risk . . . . . . . . 20 4.2.2 Using the bootstrap to obtain con dence intervals . . . . 22 4.3 Historical simulation . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4 Variance{Covariance method . . . . . . . . . . . . . . . . . . . . 24 4.5 Monte-Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . 24 5 Extreme value theory for random variables with heavy tails 26 5.1 Quantile-quantile plots . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2 Regular variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6 Hill estimation 33 6.1 Selecting the number of upper order statistics . . . . . . . . . . . 34 7 The Peaks Over Threshold (POT) method 36 7.1 How to choose a high threshold. . . . . . . . . . . . . . . . . . . . 37 7.2 Mean-excess plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . 39 7.4 Estimation of Value-at-Risk and Expected shortfall . . . . . . . . 40 8 Multivariate distributions and dependence 43 8.1 Basic properties of random vectors . . . . . . . . . . . . . . . . . 43 8.2 Joint log return distributions . . . . . . . . . . . . . . . . . . . . 44 8.3 Comonotonicity and countermonotonicity . . . . . . . . . . . . . 44 8.4 Covariance and linear correlation . . . . . . . . . . . . . . . . . . 44 8.5 Rank correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8.6 Tail dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 9 Multivariate elliptical distributions 53 9.1 The multivariate normal distribution . . . . . . . . . . . . . . . . 53 9.2 Normal mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.3 Spherical distributions . . . . . . . . . . . . . . . . . . . . . . . . 54 9.4 Elliptical distributions . . . . . . . . . . . . . . . . . . . . . . . . 55 9.5 Properties of elliptical distributions . . . . . . . . . . . . . . . . . 57 9.6 Elliptical distributions and risk management . . . . . . . . . . . 58 10 Copulas 61 10.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 10.2 Dependence measures . . . . . . . . . . . . . . . . . . . . . . . . 66 10.3 Elliptical copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 10.4 Simulation from Gaussian and t-copulas . . . . . . . . . . . . . . 72 10.5 Archimedean copulas . . . . . . . . . . . . . . . . . . . . . . . . . 73 10.6 Simulation from Gumbel and Clayton copulas . . . . . . . . . . . 76 10.7 Fitting copulas to data . . . . . . . . . . . . . . . . . . . . . . . . 78 10.8 Gaussian and t-copulas . . . . . . . . . . . . . . . . . . . . . . . . 79 11 Portfolio credit risk modeling 81 11.1 A simple model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 11.2 Latent variable models . . . . . . . . . . . . . . . . . . . . . . . . 82 11.3 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 11.4 One-factor Bernoulli mixture models . . . . . . . . . . . . . . . . 86 11.5 Probit normal mixture models . . . . . . . . . . . . . . . . . . . . 87 11.6 Beta mixture models . . . . . . . . . . . . . . . . . . . . . . . . . 88 12 Popular portfolio credit risk models 90 12.1 The KMV model . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 12.2 CreditRisk+ { a Poisson mixture model . . . . . . . . . . . . . . 94 A A few probability facts 100 A.1 Convergence concepts . . . . . . . . . . . . . . . . . . . . . . . . 100 A.2 Limit theorems and inequalities . . . . . . . . . . . . . . . . . . . 100 B Conditional expectations 101 B.1 De nition and properties . . . . . . . . . . . . . . . . . . . . . . . 101 B.2 An expression in terms the density of (X; Z) . . . . . . . . . . . 102 B.3 Orthogonality and projections in Hilbert spaces . . . . . . . . . . 103 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明