楼主: martinnyj
3657 13

免費 Mathematical Modeling and Statistical Methods for Risk Management [推广有奖]

  • 0关注
  • 58粉丝

已卖:36255份资源

学科带头人

44%

还不是VIP/贵宾

-

威望
0
论坛币
213097 个
通用积分
117.7665
学术水平
183 点
热心指数
227 点
信用等级
154 点
经验
51222 点
帖子
868
精华
0
在线时间
1598 小时
注册时间
2007-6-14
最后登录
2025-10-27

楼主
martinnyj 发表于 2009-8-2 10:49:51 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Mathematical Modeling and Statistical Methods for Risk Management
Lecture Notes
by Henrik Hult and Filip Lindskog

Preface

These lecture notes aims at giving an introduction to Quantitative Risk Management.  We will introduce statistical techniques used for deriving the profit and-loss distribution for a portfolio of financial instruments and to compute risk measures associated with this distribution.  The focus lies on the mathematical/ statistical modeling of market- and credit risk.  Operational risk and the use of fnancial time series for risk modeling is not treated in these lecture notes.

Financial institutions typically hold portfolios consisting on large number of financial instruments.  A careful modeling of the dependence between these instruments is crucial for good risk management in these situations.  A large part of these lecture notes is therefore devoted to the issue of dependence modeling.

The reader is assumed to have a mathematical/statistical knowledge corresponding to basic courses in linear algebra, analysis, statistics and an intermediate course in probability.  The lecture notes are written with the aim of presenting the material in a fairly rigorous way without any use of measure theory.


Contents

1 Some background to nancial risk management 1
1.1 A preliminary example . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Why risk management? . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Regulators and supervisors . . . . . . . . . . . . . . . . . . . . . 3
1.4 Why the government cares about the bu er capital . . . . . . . . 4
1.5 Types of risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Financial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Loss operators and nancial portfolios 6
2.1 Portfolios and the loss operator . . . . . . . . . . . . . . . . . . . 6
2.2 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Risk measurement 10
3.1 Elementary measures of risk . . . . . . . . . . . . . . . . . . . . . 10
3.2 Risk measures based on the loss distribution . . . . . . . . . . . . 12
4 Methods for computing VaR and ES 19
4.1 Empirical VaR and ES . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Con dence intervals . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Exact con dence intervals for Value-at-Risk . . . . . . . . 20
4.2.2 Using the bootstrap to obtain con dence intervals . . . . 22
4.3 Historical simulation . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Variance{Covariance method . . . . . . . . . . . . . . . . . . . . 24
4.5 Monte-Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Extreme value theory for random variables with heavy tails 26
5.1 Quantile-quantile plots . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Regular variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 Hill estimation 33
6.1 Selecting the number of upper order statistics . . . . . . . . . . . 34
7 The Peaks Over Threshold (POT) method 36
7.1 How to choose a high threshold. . . . . . . . . . . . . . . . . . . . 37
7.2 Mean-excess plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . 39
7.4 Estimation of Value-at-Risk and Expected shortfall . . . . . . . . 40
8 Multivariate distributions and dependence 43
8.1 Basic properties of random vectors . . . . . . . . . . . . . . . . . 43
8.2 Joint log return distributions . . . . . . . . . . . . . . . . . . . . 44
8.3 Comonotonicity and countermonotonicity . . . . . . . . . . . . . 44
8.4 Covariance and linear correlation . . . . . . . . . . . . . . . . . . 44
8.5 Rank correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.6 Tail dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9 Multivariate elliptical distributions 53
9.1 The multivariate normal distribution . . . . . . . . . . . . . . . . 53
9.2 Normal mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.3 Spherical distributions . . . . . . . . . . . . . . . . . . . . . . . . 54
9.4 Elliptical distributions . . . . . . . . . . . . . . . . . . . . . . . . 55
9.5 Properties of elliptical distributions . . . . . . . . . . . . . . . . . 57
9.6 Elliptical distributions and risk management . . . . . . . . . . . 58
10 Copulas 61
10.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.2 Dependence measures . . . . . . . . . . . . . . . . . . . . . . . . 66
10.3 Elliptical copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.4 Simulation from Gaussian and t-copulas . . . . . . . . . . . . . . 72
10.5 Archimedean copulas . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.6 Simulation from Gumbel and Clayton copulas . . . . . . . . . . . 76
10.7 Fitting copulas to data . . . . . . . . . . . . . . . . . . . . . . . . 78
10.8 Gaussian and t-copulas . . . . . . . . . . . . . . . . . . . . . . . . 79
11 Portfolio credit risk modeling 81
11.1 A simple model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
11.2 Latent variable models . . . . . . . . . . . . . . . . . . . . . . . . 82
11.3 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
11.4 One-factor Bernoulli mixture models . . . . . . . . . . . . . . . . 86
11.5 Probit normal mixture models . . . . . . . . . . . . . . . . . . . . 87
11.6 Beta mixture models . . . . . . . . . . . . . . . . . . . . . . . . . 88
12 Popular portfolio credit risk models 90
12.1 The KMV model . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
12.2 CreditRisk+ { a Poisson mixture model . . . . . . . . . . . . . . 94
A A few probability facts 100
A.1 Convergence concepts . . . . . . . . . . . . . . . . . . . . . . . . 100
A.2 Limit theorems and inequalities . . . . . . . . . . . . . . . . . . . 100
B Conditional expectations 101
B.1 De nition and properties . . . . . . . . . . . . . . . . . . . . . . . 101
B.2 An expression in terms the density of (X; Z) . . . . . . . . . . . 102
B.3 Orthogonality and projections in Hilbert spaces . . . . . . . . . . 103
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Mathematical mathematica Statistical statistica Management Methods Modeling Management Mathematical Risk

沙发
xellos 发表于 2009-8-2 10:53:19
赞!

藤椅
求学小灵通 发表于 2009-8-2 11:19:18
好啊!不过鄙人英语水平太低了...
积累积累积累积累,然后薄发..

板凳
dumb 发表于 2009-8-2 11:23:25
Thank you very much.
身是菩提树,心如明镜台,时时勤拂拭,勿使惹尘埃。
菩提本无树,明镜亦非台,本来无一物,何处惹尘埃?

报纸
clintonshen 在职认证  发表于 2009-8-2 13:16:28
非常感謝,定當好好學習之~~

地板
threesteps 发表于 2009-8-2 16:41:59
多谢分享。

7
fbfidwsa 发表于 2009-8-3 09:22:25
谢谢!
再谢谢!!!

8
abaobao 发表于 2009-8-12 14:33:39
xie xie fen xiang

9
myazure 发表于 2009-8-14 17:18:14
谢谢!!!!!

10
banana88 发表于 2009-11-17 17:10:25
Thnak you,I like it

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-30 20:50