| 所在主题: | |
| 文件名: Quantifying_horizon_dependence_of_asset_prices:_a_cluster_entropy_approach.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3711020.html | |
| 附件大小: | |
|
英文标题:
《Quantifying horizon dependence of asset prices: a cluster entropy approach》 --- 作者: L. Ponta and A. Carbone --- 最新提交年份: 2020 --- 英文摘要: Market dynamic is quantified in terms of the entropy $S(\\tau,n)$ of the clusters formed by the intersections between the series of the prices $p_t$ and the moving average $\\widetilde{p}_{t,n}$. The entropy $S(\\tau,n)$ is defined according to Shannon as $\\sum P(\\tau,n)\\log P(\\tau,n),$ with $P(\\tau,n)$ the probability for the cluster to occur with duration $\\tau$. \\par The investigation is performed on high-frequency data of the Nasdaq Composite, Dow Jones Industrial Avg and Standard \\& Poor 500 indexes downloaded from the Bloomberg terminal. The cluster entropy $S(\\tau,n)$ is analysed in raw and sampled data over a broad range of temporal horizons $M$ varying from one to twelve months over the year 2018. The cluster entropy $S(\\tau,n)$ is integrated over the cluster duration $\\tau$ to yield the Market Dynamic Index $I(M,n)$, a synthetic figure of price dynamics. A systematic dependence of the cluster entropy $S(\\tau,n)$ and the Market Dynamic Index $I(M,n)$ on the temporal horizon $M$ is evidenced. \\par Finally, the Market Horizon Dependence}, defined as $H(M,n)=I(M,n)-I(1,n)$, is compared with the horizon dependence of the pricing kernel with different representative agents obtained via a Kullback-Leibler entropy approach. The Market Horizon Dependence $H(M,n)$ of the three assets is compared against the values obtained by implementing the cluster entropy $S(\\tau,n)$ approach on artificially generated series (Fractional Brownian Motion). --- 中文摘要: 市场动态根据价格序列$p\\t$和移动平均值$widetilde{p}{t,n}之间的交叉点形成的集群的熵$S(\\tau,n)$进行量化。Shannon将熵$S(\\tau,n)$定义为$\\和P(\\tau,n)\\log P(\\tau,n),$和$P(\\tau,n)$集群在持续时间$\\tau$内发生的概率。\\par调查是根据从彭博终端下载的纳斯达克综合指数、道琼斯工业平均指数和标准普尔500指数的高频数据进行的。在2018年一到十二个月的时间范围内,对原始和抽样数据中的聚类熵S(\\ tau,n)$进行了分析。在集群持续时间$\\tau$内,对集群熵$\\S(\\tau,n)$进行积分,得出市场动态指数$\\I(M,n)$,这是价格动态的一个综合数字。证明了集群熵$S(\\ tau,n)$和市场动态指数$I(M,n)$在时间范围$M$上的系统依赖性。\\最后,将定义为$H(M,n)=I(M,n)-I(1,n)$的市场视界依赖性}与通过Kullback-Leibler熵方法获得的具有不同代表性代理的定价核的视界依赖性进行比较。将这三种资产的市场范围依赖性$H(M,n)$与通过对人工生成的序列(分数布朗运动)实施聚类熵$S(\\ tau,n)$方法获得的值进行比较。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Statistical Finance 统计金融 分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data 统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用 -- 一级分类:Physics 物理学 二级分类:Data Analysis, Statistics and Probability 数据分析、统计与概率 分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties. 物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明