| 所在主题: | |
| 文件名: 新建 Microsoft Word 文档.doc | |
| 资料下载链接地址: https://bbs.pinggu.org/a-775346.html | |
| 附件大小: | |
|
详细题目可参考附件。有会做的同志可以指点一二。不胜感激。
1. Consider the equation ln (y) + cos y + x3y - yex + y2 = 6 (a) Can you solve this equation to obtain an explicit expression for y as a function of x? (b) Can you obtain an explicit expression of dy dx at a point (xo; yo) that satises the equation? 2. Let u : R ) R be a C2 function satisfying Du(x) > 0 and D2u(x) < 0 for all x. Let ; I, and r be positive parameters, and consider the problem: max x;y;s u(x) + u(y) s.t. x + s = I y = (1 + r)s (a) Give a brief economic interpretation of this problem. (b) By substituting the constraints into the objective function, derive a rst-order nec- essary condition for a mximum. (c) Is this condition sucient for a maximum? Explain your answer(Need not a proof). (d) What can you say about the signs of @s @r ? Justify your answer. 3. Let u : R2 ++ ! R be a C2 function. Let p1; p2; I > 0 and consider the following equality-constrained maximization problem max x1;x2 u(x1; x2) subject to p1x1 + p2x2 = I: (a) Write the rst-order necessary conditions. (b) Write the second-order necessary conditions; (c) derive an expression for @x1 @p1 ; (d) and state the condition you need to satisfy the hypothesis of the IFT in order to answer 3c. 4. Let m 0, and consider the problem max (x1;x2)2R2 + 3px1 + x2 subject to 9x1 + 8x2 m: For each of the following three values of m, either nd and verify a saddle-point, or prove that a saddle-point does not exist. Be sure to make your reasoning clear. (a) m = 24; (b) m = 9; and (c) m = 0. 2 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明