楼主: selang
1695 0

[其它] 本人正在学习高微有问题请教这里的大牛 [推广有奖]

  • 0关注
  • 1粉丝

已卖:89份资源

大专生

58%

还不是VIP/贵宾

-

威望
0
论坛币
370 个
通用积分
0.1800
学术水平
0 点
热心指数
4 点
信用等级
2 点
经验
653 点
帖子
51
精华
0
在线时间
34 小时
注册时间
2007-1-2
最后登录
2022-4-14

楼主
selang 发表于 2010-10-18 20:55:39 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
详细题目可参考附件。有会做的同志可以指点一二。不胜感激。
1. Consider the equation
ln (y) + cos y + x3y - yex + y2 = 6
(a) Can you solve this equation to obtain an explicit expression for y as a function of x?
(b) Can you obtain an explicit expression of dy
dx
at a point (xo; yo) that satis es the
equation?
2. Let u : R ) R be a C2 function satisfying Du(x) > 0 and D2u(x) < 0 for all x. Let ; I,
and r be positive parameters, and consider the problem:
max
x;y;s
u(x) + u(y)
s.t. x + s = I
y = (1 + r)s
(a) Give a brief economic interpretation of this problem.
(b) By substituting the constraints into the objective function, derive a rst-order nec-
essary condition for a mximum.
(c) Is this condition sucient for a maximum? Explain your answer(Need not a proof).
(d) What can you say about the signs of @s
@r ? Justify your answer.
3. Let u : R2
++ ! R be a C2 function. Let p1; p2; I > 0 and consider the following
equality-constrained maximization problem
max
x1;x2
u(x1; x2) subject to p1x1 + p2x2 = I:
(a) Write the rst-order necessary conditions.
(b) Write the second-order necessary conditions;
(c) derive an expression for @x1
@p1
;
(d) and state the condition you need to satisfy the hypothesis of the IFT in order to
answer 3c.
4. Let m  0, and consider the problem
max
(x1;x2)2R2
+
3px1 + x2 subject to 9x1 + 8x2  m:
For each of the following three values of m, either nd and verify a saddle-point, or prove
that a saddle-point does not exist. Be sure to make your reasoning clear.
(a) m = 24;
(b) m = 9; and
(c) m = 0.
2
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:maximization Constrained Constraints Expression Conditions expression function positive equation 不胜感激

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-25 19:08