Technical Guide for Latent GOLD 5.0.pdf
(937.78 KB, 需要: 4 个论坛币)
************************************************
Contents
1 Introduction to Part I (BasicModels) . . . . . . . . . . . .. . . . . . . . 5
2 Components of a Latent GOLDModel . . . . . . . . . . . . . . . . . 8
2.1 Probability Structure . . . . . . . . .. . . . . . . . . . . . . . 8
2.2 Conditional Distributions . . . . . . .. . . . . . . . . . . . . . 10
2.2.1 Nominal and ordinal dependentvariables . . . . . . . . 10
2.2.2 Continuous dependent variables . . .. . . . . . . . . . 11
2.2.3 Poisson counts . . . . . . . . . . .. . . . . . . . . . . 12
2.2.4 Binomial counts . . . . . . . . . . .. . . . . . . . . . . 13
2.3 Types of GLM-family Regression Models .. . . . . . . . . . . 15
2.4 Coding of Nominal Variables . . . . . .. . . . . . . . . . . . . 17
2.5 Known-Class Indicator . . . . . . . . .. . . . . . . . . . . . . 19
3 Latent Class Cluster Models. .. . . . . . . . . . . . . . . 20
3.1 Probability Structure and LinearPredictors . . . . . . . . . . 21
3.2 The Standard LC Model for CategoricalIndicators . . . . . . 23
3.3 Covariates . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 24
3.4 Local Dependencies . . . . . . . . . .. . . . . . . . . . . . . . 25
3.5 Finite Mixture Models for ContinuousResponse Variables . . 26
3.6 LC Cluster Models for Mixed Mode Data .. . . . . . . . . . . 28
3.7 Parameter Restrictions in Cluster Models. . . . . . . . . . . . 29
4 DFactor Models . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .30
4.1 Probability Structure and LinearPredictors . . . . . . . . . . 31
4.2 A Two-DFactor Model for NominalIndicators . . . . . . . . . 32
4.3 Other Possibilities . . . . . . . . . .. . . . . . . . . . . . . . . 34
4.4 Parameter Restrictions in DFactorModels . . . . . . . . . . . 34
5 Latent Class Regression Models . . . . . . . . . . . . . . . . 35
5.1 Probability Structure and LinearPredictors . . . . . . . . . . 36
5.2 Some Special Cases . . . . . . . . . .. . . . . . . . . . . . . . 38
5.3 Restrictions for the Class-SpecificRegression Coefficients . . . 39
6 Step-Three Analysis andScoring . . . . . . . . . . . . . . .44
6.1 Bias-Adjusted Step-Three Analysis . . .. . . . . . . . . . . . 44
6.2 Obtaining the Score Equation . . . . .. . . . . . . . . . . . . 47
6.3 Estimation of Step-Three Models and theScoring Equation . . 48
7 Estimation and Other TechnicalIssues . . . . . . . . . . . . . . . 49
7.1 Log-likelihood and Log-posteriorFunction . . . . . . . . . . . 49
7.2 Missing Data . . . . . . . . . . . . .. . . . . . . . . . . . . . 51
7.2.1 Indicators and dependent variable . .. . . . . . . . . . 51
7.2.2 Covariates and predictors . . . . . .. . . . . . . . . . 52
7.2.3 Summary of the Missing Value Settings. . . . . . . . . 53
7.3 Prior Distributions . . . . . . . . . .. . . . . . . . . . . . . . 54
7.4 Algorithms . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 56
7.5 Convergence . . . . . . . . . . . . . .. . . . . . . . . . . . . . 59
7.6 Parallel Processing . . . . . . . . . .. . . . . . . . . . . . . . 60
7.7 Start Values . . . . . . . . . . . . .. . . . . . . . . . . . . . . 60
7.8 Bootstrapping the P Value for Chi2Statistics or -2LL Difference 62
7.9 Identification Issues . . . . . . . . .. . . . . . . . . . . . . . . 63
7.10 Selecting and Holding out Cases orReplications . . . . . . . . 64
7.10.1 Selecting Cases or Replications . .. . . . . . . . . . . 64
7.10.2 Holding out Replications . . . . . .. . . . . . . . . . . 64
7.10.3 Holding out Cases . . . . . . . . .. . . . . . . . . . . 64
8 Latent GOLD’s Output . . . . .. . . . . . . . . . . . . .65
8.1 Model Summary . . . . . . . . . . . . .. . . . . . . . . . . . 65
8.1.1 Chi-squared statistics . . . . . . .. . . . . . . . . . . . 66
8.1.2 Log-likelihood statistics . . . . . .. . . . . . . . . . . 69
8.1.3 Classification statistics . . . . . .. . . . . . . . . . . . 69
8.1.4 Model classification statistics . . .. . . . . . . . . . . 73
8.1.5 Prediction statistics . . . . . . . .. . . . . . . . . . . . 73
8.2 Parameters . . . . . . . . . . . . . .. . . . . . . . . . . . . . 76
8.3 Profile . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 77
8.4 ProbMeans . . . . . . . . . . . . . . .. . . . . . . . . . . . . 80
8.5 Frequencies / Residuals . . . . . . . .. . . . . . . . . . . . . . 81
8.6 Bivariate Residuals . . . . . . . . . .. . . . . . . . . . . . . . 81
8.7 Estimated Values . . . . . . . . . . .. . . . . . . . . . . . . . 84
8.8 Classification . . . . . . . . . . . .. . . . . . . . . . . . . . . 84
8.9 Output-to-file Options . . . . . . . .. . . . . . . . . . . . . . 85
9 Introduction to Part II(Advanced Models) . . . . . . . . . . . . . . . 87
10 Latent Markov Models. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 89
10.1 The Simplest Latent Markov Model . . .. . . . . . . . . . . . 90
10.2 The General Mixture Latent Markov withCovariates . . . . . 90
10.3 Restrictions . . . . . . . . . . . . .. . . . . . . . . . . . . . . 92
10.4 Parameter Estimation . . . . . . . . .. . . . . . . . . . . . . 92
11 Continuous Factors . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .93
11.1 Model Components and Estimation Issues. . . . . . . . . . . 93
11.2 Application Types . . . . . . . . . .. . . . . . . . . . . . . . 96
11.2.1 Factor analysis . . . . . . . . . .. . . . . . . . . . . . 96
11.2.2 IRT models . . . . . . . . . . . . .. . . . . . . . . . . 98
11.2.3 Local dependence LC models . . . . .. . . . . . . . . 99
11.2.4 Random-effects models . . . . . . .. . . . . . . . . . . 100
11.2.5 Random-intercept model withcovariates . . . . . . . . 102
11.2.6 LC (FM) regression models withrandom effects . . . . 103
12 Multilevel LC Model. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 104
12.1 Model Components and Estimation Issues. . . . . . . . . . . 104
12.2 Application Types . . . . . . . . . .. . . . . . . . . . . . . . 107
12.2.1 Two-level LC or FM model . . . . . .. . . . . . . . . 107
12.2.2 LC (FM) regression models forthree-level data . . . . 108
12.2.3 Three-level random-effects GLMs . .. . . . . . . . . . 109
12.2.4 LC growth models for multipleindicators or nested data110
12.2.5 Various IRT applications . . . . . .. . . . . . . . . . . 111
12.2.6 Non multilevel models . . . . . . .. . . . . . . . . . . 112
13 Complex Survey Sampling . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .112
13.1 Pseudo-ML Estimation and LinearizationEstimator . . . . . . 112
13.2 A Two-step Method . . . . . . . . . .. . . . . . . . . . . . . 115
14 Latent GOLD’s Advanced Output. . . . . . . . . . . . . . .115
14.1 Model Summary . . . . . . . . . . . .. . . . . . . . . . . . . 116
14.2 Parameters . . . . . . . . . . . . . .. . . . . . . . . . . . . . 117
14.3 Profile . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 118
14.4 GProfile . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 118
14.5 Profile-Longitudinal . . . . . . . . .. . . . . . . . . . . . . . . 119
14.6 ProbMeans . . . . . . . . . . . . . .. . . . . . . . . . . . . . 119
14.7 Bivariate Residuals . . . . . . . . .. . . . . . . . . . . . . . . 119
14.8 Frequencies . . . . . . . . . . . . .. . . . . . . . . . . . . . . 120
14.9 Estimated Values . . . . . . . . . . .. . . . . . . . . . . . . . 120
14.10Classification . . . . . . . . . . . .. . . . . . . . . . . . . . . 121
14.11Output-to-file Options . . . . . . . .. . . . . . . . . . . . . . 121
15 Introduction to Part III(Syntax Models) . . . . . . . . . . . . . . . . . .123
16 Various Modeling Optionswhich are Specific to Syntax . .. . . . . .126
16.1 Alternative Regression Models forDichotomous and Ordinal DependentVariables . . . . . . 126
16.2 Additional Regression Models forContinuous Dependent Variables. . . . . . . . 128
16.3 Log-linear Scale Factor Models forCategorical Dependent Variables . .. . . . 129
16.4 Regression Models with a Cell WeightVector (“wei” Option) 130
16.5 Continuous-Time Markov Models . . . .. . . . . . . . . . . . 131
17 Various Output Options whichare Specific to Syntax . . . . . . . . . . . . . . .133
17.1 Other Variance Estimators . . . . . .. . . . . . . . . . . . . . 133
17.1.1 Complex sampling standard errors . .. . . . . . . . . 133
17.1.2 Other standard errors . . . . . . .. . . . . . . . . . . 134
17.2 Power Computation for Wald Tests . . .. . . . . . . . . . . . 135
17.3 Score Tests and EPCs . . . . . . . . .. . . . . . . . . . . . . 135
17.4 Identification Checking . . . . . . .. . . . . . . . . . . . . . 136
17.5 Continuous-Factor and Random-EffectCovariances . . . . . . 137
18 Bibliography . . . . . . . .. . . . . . .139
19 Notation . . . . . . . . . .. . . . .158
19.1 Basic Models . . . . . . . . . . . . .. . . . . . . . . . . . . . 158
19.2 Advanced Models . . . . . . . . . . .. . . . . . . . . . . . . . 159
19.3 Syntax Models . . . . . . . . . . . .. . . . . . . . . . . . . . 159


雷达卡





京公网安备 11010802022788号







