摘要翻译:
我们的目标是估计一个函数$\lambda:[0,1]\to\mathbb{R}$,但它是递减(或递增)的。我们提供了一种统一的方法来研究一个估计量的$\mathbb{L}_p$-损失,该估计量定义为一个本原的$\lambda$的估计量的凹(或凸)逼近的斜率,基于$n$观测值。我们的主要任务是证明$\mathbb{L}_p$-损失是渐近高斯的,并且具有显式的(尽管未知的)渐近均值和方差。我们还证明了不动点的局部$\mathbb{L}_p$-风险和全局$\mathbb{L}_p$-风险是$n^{-p/3}$级的。将所得结果应用于密度模型和回归模型,我们恢复和推广了Grenander和Brunk估计的已知结果。同时,我们得到了随机审查模型中单调失效率的Huang-Wellner估计和非齐次Poisson过程单调强度函数估计的新结果。
---
英文标题:
《On the $\mathbb{L}_p$-error of monotonicity constrained estimators》
---
作者:
C\'ecile Durot
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We aim at estimating a function $\lambda:[0,1]\to \mathbb {R}$, subject to the constraint that it is decreasing (or increasing). We provide a unified approach for studying the $\mathbb {L}_p$-loss of an estimator defined as the slope of a concave (or convex) approximation of an estimator of a primitive of $\lambda$, based on $n$ observations. Our main task is to prove that the $\mathbb {L}_p$-loss is asymptotically Gaussian with explicit (though unknown) asymptotic mean and variance. We also prove that the local $\mathbb {L}_p$-risk at a fixed point and the global $\mathbb {L}_p$-risk are of order $n^{-p/3}$. Applying the results to the density and regression models, we recover and generalize known results about Grenander and Brunk estimators. Also, we obtain new results for the Huang--Wellner estimator of a monotone failure rate in the random censorship model, and for an estimator of the monotone intensity function of an inhomogeneous Poisson process.
---
PDF链接:
https://arxiv.org/pdf/708.2219