签到
苹果/安卓/wp
苹果/安卓/wp
客户端
0.0
0.00
推广加币
升级SVIP
SVIP(AI增强版)
注册
|
登录
经管百科
论坛BBS
搜索
搜索
用户
人大经济论坛
›
标签
›
维纳过程
标签: 维纳过程
经管大学堂:名校名师名课
相关帖子
版块
作者
回复/查看
最后发表
金融资产定价 彭齐纳 答案
金融学(理论版)
夏丰山
2016-6-30
2
1987
cc457921
2016-7-1 08:10:35
[求助]关于证券维纳过程和布朗运动的问题。
金融学(理论版)
prakect
2007-10-25
4
5980
证劵人
2015-5-21 11:39:09
更多...
相关日志
分享
维纳过程
accumulation
2014-12-19 16:23
一维的维纳过程的一个路径 三维的维纳过程的一个路径 数学中, 维纳过程 ( Wiener process )是一种连续时间随机过程,得名于诺伯特·维纳。由于与物理学中的布朗运动有密切关系,也常被称为“ 布朗运动过程 ”或简称为 布朗运动 。维纳过程是莱维过程(指左极限右连续的平稳独立增量随机过程)中最有名的一类,在纯数学、应用数学、经济学与物理学中都有重要应用。 维纳过程的地位在纯数学中与在应用数学中同等重要。在纯数学中,维纳过程导致了对连续鞅理论的研究,是刻画一系列重要的复杂过程的基本工具。它在随机分析、扩散过程和位势论领域的研究中是不可或缺的。在应用数学中,维纳过程可以描述高斯白噪声的积分形式。在电子工程中,维纳过程是建立噪音的数学模型的重要部分。控制论中,维纳过程可以用来表示不可知因素。 维纳过程和物理学中的布朗运动有密切关系。布朗运动是指悬浮在液体中的花粉微小颗粒所进行的无休止随机运动。维纳运动也可以描述由福克-普朗克方程和郎之万方程确定的其他随机运动。维纳过程构成了量子力学的严谨路径积分表述的基础(根据费曼-卡茨公式,薛定谔方程的解可以用维纳过程表示)。金融数学中,维纳过程可以用于描述期权定价模型如布莱克-斯科尔斯模型。
0
个评论
更多...
京ICP备16021002号-2
京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明
GMT+8, 2025-12-27 02:56
积分 0, 距离下一级还需 积分