|
三、季节指数法实例
(-)季节模型的类型
季节模型是反映具有季节变动规律的时间序列模型。季节变动通常是指以年为一个周期的变化。引起季节变动的首要因素是四季更迭。季节变动在很多产品市场上都是一种常见现象,最为典型的季节性产品市场如冷饮、服装、空调等。
传统的时间序列分析把时间序列的波动归结为四大因素:趋势变动(T)、季节变动(S)、循环变动(C)和不规则变动(I)。其中循环变动指周期为数年的变动,这种变动不一定存在固定变化周期和确定性变化规律,通常指经济周期。不规则变动即随机变动。四种变动因素对序列的影响被概括为两个经典模型:
乘法模型Y=TSCI
加法模型Y=T+S+C+I
乘法模型通常适用于因素T,S,C相关的情形,比如季节因素的作用随着趋势的变化而改变;加法模型通常适用于因素T,S,C相互独立的情况。需要注意的是,季节模型一般需要3年以上的季度或月度数据。
(二)季节调整
对序列进行季节调整,就是将季节变动从序列中去除。基本思路是:
Y/S=TSI/S=TI
或 Y-SI=TI
序列里存在季节波动常常会妨碍市场人员对某些问题的认识。比如,3月份的饮料销售比2月份好吗?如果单单从数据的表面看,3月份的销量应该比2月份好。但这种所谓的“好”并没有考虑季节变动而引起的市场规模的扩大,也就是说,如果剔除季节因素的影响,3月份的销售效果未必比2月份好。季节调整的目的就是为了剔除掉季节因素的作用,从而使序列本身的趋势特征更加准确地显现出来。
Eviews中有两种实现季节调整的菜单操作方法。在主窗口中点击菜单Quick→Series Statistics→Seasonal Adjustment,或者在序列对象窗口中点击工具栏按钮Procs→Seasonal Adjustment。点击后,屏幕出现季节调整对话框窗口(见图9)。
对话框左上部分是季节调整的方法(Adjustment Method),包括Census X11法、移动平均季节乘法(Ratio to moving average-Multiplicative)、移动平均季节加法(Difference from moving average-Additive)。系统默认的方法是移动平均季节乘法。
对话框左下部分是待计算序列(Series to Calculate),包括调整后序列(Adjusted Series)名称和季节因子(Factors)名称。季节因子计算是可选的,只有用户在其对应的框中输入名称后,系统才会将季节因子计算的结果保存在一个序列中。
〔例5〕现有某地区某种产品产量近4年的分月资料(见表8),试预测该种产品2003年各月的产量。
表8 某地区某产品产量 单位:万件
图9 季节调整对话框
解:第一步,建立一个新的工作文档,文档的样本期为1999年三月-2002年12月。生成序列SUPLY,录入表中的产量数据。
第二步,打开SUPLY序列对象窗口,点击View→Line Graph,绘制连线图(见图10)。
图10 产量变化图
从图形的形状很容易看到,该种产品的产量确实存在非常明显的季节变动。
第三步,生成调整后序列。根据前面的方法,生成调整后序列SUPLYSA和季节团于序列JIJIE。这里使用的模型是乘法模型,因此在如图9所示的对话框中选择的季节调整方法是移动平均季节乘法(Ratio to moving average-Multiplicative)。季节调整后产量变化情况和月度季节因子见图11和表9。
图11 季节调整后产量变化情况
表9 月度季节因子
第四步,进行预测。按照乘法模型的理论,当剔除序列的季节波动之后,序列中主要存在的变动因素是趋势。对于趋势,当然可以采用移动平均或者指数平滑的方法确定,但由于本例中要求预测2003年度12个月份的产量,预测期较长,因此采用建立趋势模型,进行外推预测是比较合适的。
建立趋势模型的具体步骤这里不再赘述。这里仍然采用指数模型,通过参数估计得到模型的具体形态如下:
log(suplysa)=1.8557+0.0284×T
其中,T使用命令Genr T=@Trend得到。根据趋势模型可以推算出2003年l-12月的趋势值(见表10(中))。将对应月份的趋势值乘以相应的季节因子得到预测值(见表10(右))。
表10 趋势预测值与预计产量 单位:万件
|