|
f function `summary` is applied to an object of class `bvarlist`, it produces a table of information criteria for each specification. The information criteria are calculated based on the posterior draws of the respective model and calculated in the following way:
* *Log-likelihood*: $LL = \frac{1}{R} \sum_{i = 1}^{R} \left( \sum_{t = 1}^{T} -\frac{K}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_t^{(i)}| -\frac{1}{2} (u_t^{{(i)}\prime} (\Sigma_t^{(i)})^{-1} u_t^{(i)} \right)$ for each draw $i$ and $u_t = y_t - \mu_t$;
* *Akaika information criterion*: $AIC = 2 (Kp + M (s + 1) + N) - 2 LL$;
* *Bayesian information criterion*: $BIC = ln(T) (Kp + M (s + 1) + N) - 2 LL$;
* *Hannan-Quinn information criterion*: $HQ = 2 ln(ln(T)) (Kp + M (s + 1) + N) - 2 LL$.
$K$ is the number of endogenous variables and $p$ the lag order of the model. If exogenous variables were used $M$ is the number of stochastic exogenous regressors and $s$ is the lag order for those variables. $N$ is the number of deterministic terms.
|