7592 7

[回归分析求助] 横截面数据 ,个体固定效应 stata [推广有奖]

  • 0关注
  • 0粉丝

本科生

14%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
901 点
帖子
53
精华
0
在线时间
67 小时
注册时间
2015-9-14
最后登录
2022-4-29

楼主
莫对不起受的苦 发表于 2020-12-18 08:53:53 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
各位老师好,我是用的横截面想做个体固定效应。比如命令是reg y a b c,做个体固定效应的命令:reg y a b c i.id.但是出现了很多_Iid_ omitted because of collinearity。这要怎么解决啊?而且我做的个体固定效应在论文中的表格只能是新加一个虚拟变量:个体固定效应,说明结果?。这个回归后出现了与观测值同样多的id,这要怎么办?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:个体固定效应 Stata 横截面数据 截面数据 固定效应

沙发
莫对不起受的苦 发表于 2020-12-18 09:00:21 来自手机
莫对不起受的苦 发表于 2020-12-18 08:53
各位老师好,我是用的横截面想做个体固定效应。比如命令是reg y a b c,做个体固定效应的命令:reg y a b c ...
按照这个命令:reg lnc lny pension gender age ms education people health sd lnr lnv lnia loan assistance i.id<br>
出现的结果:id:  factor variables may not contain noninteger values<br>
按照这个命令:xi:reg lnc lny pension gender age ms education people health sd lnr lnv lnia loan assistance i.id<br>
出现的结果:<br>
i.id              _Iid_1-1411         (_Iid_1 for id==.1000000014901161 omitted)note: _Iid_61 omitted because of collinearitynote: _Iid_65 omitted because of collinearitynote: _Iid_70 omitted because of collinearitynote: _Iid_84 omitted because of collinearitynote: _Iid_88 omitted because of collinearitynote: _Iid_91 omitted because of collinearitynote: _Iid_95 omitted because of collinearitynote: _Iid_117 omitted because of collinearitynote: _Iid_128 omitted because of collinearitynote: _Iid_177 omitted because of collinearitynote: _Iid_208 omitted because of collinearitynote: _Iid_212 omitted because of collinearitynote: _Iid_238 omitted because of collinearitynote: _Iid_274 omitted because of collinearitynote: _Iid_312 omitted because of collinearitynote: _Iid_370 omitted because of collinearitynote: _Iid_388 omitted because of collinearitynote: _Iid_430 omitted because of collinearitynote: _Iid_436 omitted because of collinearitynote: _Iid_443 omitted because of collinearitynote: _Iid_467 omitted because of collinearitynote: _Iid_482 omitted because of collinearitynote: _Iid_493 omitted because of collinearitynote: _Iid_499 omitted because of collinearitynote: _Iid_528 omitted because of collinearitynote: _Iid_530 omitted because of collinearitynote: _Iid_536 omitted because of collinearitynote: _Iid_540 omitted because of collinearitynote: _Iid_553 omitted because of collinearitynote: _Iid_568 omitted because of collinearitynote: _Iid_609 omitted because of collinearitynote: _Iid_614 omitted because of collinearitynote: _Iid_620 omitted because of collinearitynote: _Iid_626 omitted because of collinearitynote: _Iid_651 omitted because of collinearitynote: _Iid_655 omitted because of collinearitynote: _Iid_676 omitted because of collinearitynote: _Iid_677 omitted because of collinearitynote: _Iid_693 omitted because of collinearitynote: _Iid_702 omitted because of collinearitynote: _Iid_725 omitted because of collinearitynote: _Iid_740 omitted because of collinearitynote: _Iid_765 omitted because of collinearitynote: _Iid_774 omitted because of collinearitynote: _Iid_793 omitted because of collinearitynote: _Iid_812 omitted because of collinearitynote: _Iid_817 omitted because of collinearitynote: _Iid_838 omitted because of collinearitynote: _Iid_840 omitted because of collinearitynote: _Iid_879 omitted because of collinearitynote: _Iid_907 omitted because of collinearitynote: _Iid_908 omitted because of collinearitynote: _Iid_921 omitted because of collinearitynote: _Iid_924 omitted because of collinearitynote: _Iid_937 omitted because of collinearitynote: _Iid_943 omitted because of collinearitynote: _Iid_965 omitted because of collinearitynote: _Iid_993 omitted because of collinearitynote: _Iid_1013 omitted because of collinearitynote: _Iid_1019 omitted because of collinearitynote: _Iid_1032 omitted because of collinearitynote: _Iid_1038 omitted because of collinearitynote: _Iid_1041 omitted because of collinearitynote: _Iid_1044 omitted because of collinearitynote: _Iid_1045 omitted because of collinearitynote: _Iid_1066 omitted because of collinearitynote: _Iid_1072 omitted because of collinearitynote: _Iid_1101 omitted because of collinearitynote: _Iid_1103 omitted because of collinearitynote: _Iid_1108 omitted because of collinearitynote: _Iid_1126 omitted because of collinearitynote: _Iid_1143 omitted because of collinearitynote: _Iid_1176 omitted because of collinearitynote: _Iid_1191 omitted because of collinearitynote: _Iid_1192 omitted because of collinearitynote: _Iid_1223 omitted because of collinearitynote: _Iid_1231 omitted because of collinearitynote: _Iid_1339 omitted because of collinearitynote: _Iid_1370 omitted because of collinearitynote: _Iid_1383 omitted because of collinearity      Source |       SS           df       MS      Number of obs   =     1,345-------------+----------------------------------   F(1344, 0)      =         .       Model |  1276.63664     1,344   .94987845   Prob &gt; F        =         .    Residual |           0         0           .   R-squared       =    1.0000-------------+----------------------------------   Adj R-squared   =         .       Total |  1276.63664     1,344   .94987845   Root MSE        =         0------------------------------------------------------------------------------         lnc |      Coef.   Std. Err.      t    P&gt;|t|     [95% Conf. Interval]-------------+----------------------------------------------------------------         lny |   .0675591          .        .       .            .           .     pension |   .1573239          .        .       .            .           .      gender |   .3433056          .        .       .            .           .         age |   .0309434          .        .       .            .           .          ms |  -.1769194          .        .       .            .           .   education |   .0534946          .   

藤椅
zdlspace 学生认证  发表于 2020-12-18 16:35:49
莫对不起受的苦 发表于 2020-12-18 09:00
按照这个命令:reg lnc lny pension gender age ms education people health sd lnr lnv lnia loan assi ...
做个体固定效应,首先你得是面板数据啊,截面数据做不了啊,做ols吧

板凳
莫对不起受的苦 发表于 2020-12-20 11:32:42 来自手机
zdlspace 发表于 2020-12-18 16:35
做个体固定效应,首先你得是面板数据啊,截面数据做不了啊,做ols吧
哦哦,好的,个体固定效应不能是面板数据是吗

报纸
zdlspace 学生认证  发表于 2020-12-20 22:13:59
莫对不起受的苦 发表于 2020-12-20 11:32
哦哦,好的,个体固定效应不能是面板数据是吗
什么跟什么啊,我是说截面数据做不了个体固定效应,什么时候说过面板数据做不了固定效应

地板
莫对不起受的苦 发表于 2020-12-21 19:02:20 来自手机
zdlspace 发表于 2020-12-20 22:13
什么跟什么啊,我是说截面数据做不了个体固定效应,什么时候说过面板数据做不了固定效应
横截面数据加一个虚拟变量i.id再回归不行吗?这不是个体固定效应?

7
zdlspace 学生认证  发表于 2020-12-22 10:58:23
莫对不起受的苦 发表于 2020-12-21 19:02
横截面数据加一个虚拟变量i.id再回归不行吗?这不是个体固定效应?
横截面数据如果加I. id,相当于在同一个个体内比较,是估计不出来系数的,如果是面板数据,那么加I. id与xtreg,fe是等价的。无论如何,个体固定效应首先必须是面板数据结构,这也是面板数据相对于截面数据的优势。

8
莫对不起受的苦 发表于 2020-12-24 07:36:44 来自手机
zdlspace 发表于 2020-12-22 10:58
横截面数据如果加I. id,相当于在同一个个体内比较,是估计不出来系数的,如果是面板数据,那么加I. id与 ...
好的,谢谢前辈

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-5 14:05