楼主: slowry
8258 38

[学科前沿] 【2021新书】Statistics for Making Decisions [推广有奖]

已卖:47363份资源

大师

59%

还不是VIP/贵宾

-

威望
12
论坛币
941387 个
通用积分
5904.7878
学术水平
3059 点
热心指数
3451 点
信用等级
3185 点
经验
214190 点
帖子
4687
精华
0
在线时间
12206 小时
注册时间
2018-3-1
最后登录
2022-6-29

楼主
slowry 发表于 2021-2-26 11:14:44 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Statistics for Making Decisions
by Nicholas T. Longford

About the Author
Nicholas T. Longford is a senior statistician at Imperial College, London, specialising in statistical methods for neonatal medicine. His interests include causal analysis of observational studies, decision theory, and the contest of modelling and design in data analysis. His longer-term appointments in the past include Educational Testing Service, Princeton, NJ, USA, de Montfort University, Leicester, England, and directorship of SNTL, a statistics research and consulting company. He is the author of over 100 journal articles and six other monographs on a variety of topics in applied statistics.

About this Book
Making decisions is a ubiquitous mental activity in our private and professional or public lives. It entails choosing one course of action from an available shortlist of options. Statistics for Making Decisions places decision making at the centre of statistical inference, proposing its theory as a new paradigm for statistical practice. The analysis in this paradigm is earnest about prior information and the consequences of the various kinds of errors that may be committed. Its conclusion is a course of action tailored to the perspective of the specific client or sponsor of the analysis. The author’s intention is a wholesale replacement of hypothesis testing, indicting it with the argument that it has no means of incorporating the consequences of errors which self-evidently matter to the client.

The volume appeals to the analyst who deals with the simplest statistical problems of comparing two samples (which one has a greater mean or variance), or deciding whether a parameter is positive or negative. It combines highlighting the deficiencies of hypothesis testing with promoting a principled solution based on the idea of a currency for error, of which we want to spend as little as possible. This is implemented by selecting the option for which the expected loss is smallest (the Bayes rule).

The price to pay is the need for a more detailed description of the options, and eliciting and quantifying the consequences (ramifications) of the errors. This is what our clients do informally and often inexpertly after receiving outputs of the analysis in an established format, such as the verdict of a hypothesis test or an estimate and its standard error. As a scientific discipline and profession, statistics has a potential to do this much better and deliver to the client a more complete and more relevant product.

Brief Contents
1 First steps 1
    1.1 What shall we do? 1
        Example1 3
    1.2 The setting  6
        1.2.1 Losses and gains 7
        1.2.2 States,spaces and parameters 9
        1.2.3 Estimation Fixed and random 10
    1.3 Study design 11
    1.4 Exercises 11
2  Statistical paradigms 15
    2.1 Frequentist paradigm  16
        2.1.1 Bias andvariance 17
        2.1.2 Distributions 18
        2.1.3 Sampling from finite populations 19
    2.2 Bayesian paradigm 20
    2.3 Computer-based replications 22
    2.4 Design and estimation  24
    2.5 Likelihood and fiducial distribution 25
        2.5.1 Example.Variance estimation 26
    2.6 From estimate to decision 27
    2.7 Hypothesis testing 29
    2.8 Hypothesis test and decision 32
    2.9 Combining values and probabilities — Additivity 35
    2.10 Further reading 36
    2.11 Exercises 36
3 Positive or negative? 41
    3.1 Constant loss 41
        3.1.1 Equilibrium and critical value 43
    3.2 The margin of error 44
    3.3 Quadratic loss 46
    3.4 Combining loss functions 47
    3.5 Equilibrium function  48
        Example 2 49
        Example 3 51
    3.6 Plausible values and impasse 53
    3.7 Elicitation  55
        3.7.1 Post-analysis elicitation 56
    3.8 Plausible rectangles 57
        Example 4 60
        3.8.1 Summary 61
    3.9 Further reading 62
    3.10 Exercises 62
4 Non-normally distributed estimators 67
    4.1 Student t distribution  67
        4.1.1 Fiducial distribution for the t ratio 68
        Example 5 70
        Example 6 71
    4.2 Verdicts for variances  72
        4.2.1 Linear loss for variances 74
        4.2.2 Verdicts for standard deviations 76
    4.3 Comparing two variances 77
        Example7 79
    4.4 Statistics with binomial and Poisson distributions 81
        4.4.1 Poisson distribution 86
        Example 8 86
    4.5 Further reading 87
    4.6 Exercises 87
    Appendix 90
5 Small or large? 91
    5.1 Piecewise constant loss 92
        5.1.1 Asymmetric loss 95
    5.2 Piecewise linear loss 97
        Example 9 101
    5.3 Piecewise quadratic loss 101
        Example 10 103
        Example 11 105
    5.4 Ordinal categories 106
        5.4.1 Piecewise linear and quadratic losses 108
    5.5 Multitude of options 109
        5.5.1 Discrete options 109
        5.5.2 Continuum of options 111
    5.6 Further reading 113
    5.7 Exercises 113
    Appendix 116
        A.Expected loss Ql in equation(5.3) 116
        B.Continuation of Example 9 116
        C.Continuation of Example 10 117
6 Study design 119
    6.1 Design and analysis 119
    6.2 How big a study? 121
    6.3 Planning for impasse  127
        6.3.1 Probability of impasse 128
        Example12 131
    6.4 Further reading 133
    6.5 Exercises 134
    Appendix.Sample size calculation for hypothesis testing 137
7 Medical screening 139
    7.1 Separating positives and negatives 140
        Example 13 142
    7.2 Cut points specific to subpopulations 145
    7.3 Distributionsotherthannormal 146
        7.3.1 Normaland t distributions 147
    7.4 Anearlyperfectbutexpensivetest 148
        Example 14 149
    7.5 Further reading 150
    7.6 Exercises 151
8 Many decisions 153
    8.1 Ordinary and exceptional units 154
        Example 15 157
    8.2 Extreme selections 158
        Example 16 159
    8.3 Greyzone  162
    8.4 Actions in a sequence  163
    8.5 Further reading 166
    8.6 Exercises 167
    Appendix 168
        A.Moment-matching estimator 168
        B.The potential outcomes framework 169
9 Performance of institutions 175
    9.1 The setting and the task 176
        9.1.1 Evidence of poor performance 176
        9.1.2 Assessment as a classification 177
    9.2 Outliers 177
    9.3 As good as the best 180
    9.4 Empirical Bayes estimation 181
    9.5 Assessment based on rare events 185
    9.6 Furtherreading 186
    9.7 Exercises 186
    Appendix 189
        A.Estimation of theda and v2 189
        B.Adjustment and matching on background190
10 Clinical trials 195
    10.1 Randomisation 197
    10.2 Analysis by hypothesis testing 199
    10.3 Electing a course of action—approve or reject? 201
    10.4 Decision about superiority 202
        10.4.1 More complex loss functions 203
        10.4.2 Trials for non-inferiority 204
    10.5 Trials for bioequivalence 205
    10.6 Crossover design 207
        10.6.1 Composition of within-period estimators 209
    10.7 Further reading 212
    10.8 Exercises 213
11 Model uncertainty 217
    11.1 Ordinary regression 218
        11.1.1 Ordinary regression and model uncertainty 221
        11.1.2 Some related approaches 224
        11.1.3 Bounded bias 224
    11.2 Composition 228
    11.3 Composition of a complete set of candidate models 232
        11.3.1 Summary 238
    11.4 Further reading 238
    11.5 Exercises 239
    Appendix 241
        A.Inverse of a partitioned matrix 241
        B.Mixtures  243
            EM algorithm 243
        C.Linearloss 244
12 Postscript 247
References 251
Solutions to exercises 257
Index 287

Pages: 307
Language: English
Publisher: Chapman and Hall/CRC (March 3, 2021)
ISBN-10: 0367342677
ISBN-13: 9780367342678

CRC__Statistics for Making Decisions.pdf (13.88 MB, 需要: 30 个论坛币)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Statistics Decisions statistic Decision Statist

已有 5 人评分经验 论坛币 学术水平 热心指数 信用等级 收起 理由
jgtech + 5 + 3 + 3 + 3 精彩帖子
zl89 + 80 精彩帖子
cheetahfly + 100 + 1 精彩帖子
wwqqer + 100 + 1 + 1 + 1 精彩帖子
zhou_yl + 80 精彩帖子

总评分: 经验 + 280  论坛币 + 85  学术水平 + 5  热心指数 + 4  信用等级 + 4   查看全部评分

本帖被以下文库推荐

沙发
三重虫(未真实交易用户) 发表于 2021-2-26 13:15:40
感谢楼主分享!
已有 1 人评分论坛币 学术水平 热心指数 信用等级 收起 理由
slowry + 5 + 1 + 1 + 1 精彩帖子

总评分: 论坛币 + 5  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

藤椅
dxystata(未真实交易用户) 发表于 2021-2-26 13:18:21
谢谢分享!
已有 1 人评分论坛币 学术水平 热心指数 信用等级 收起 理由
slowry + 5 + 1 + 1 + 1 精彩帖子

总评分: 论坛币 + 5  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

板凳
zhou_yl(未真实交易用户) 发表于 2021-2-26 17:36:48
感谢楼主分享!
已有 1 人评分论坛币 学术水平 热心指数 信用等级 收起 理由
slowry + 5 + 5 + 5 + 5 精彩帖子

总评分: 论坛币 + 5  学术水平 + 5  热心指数 + 5  信用等级 + 5   查看全部评分

报纸
zhc8877(真实交易用户) 发表于 2021-2-26 21:41:03
感谢楼主分享!
已有 1 人评分论坛币 学术水平 热心指数 信用等级 收起 理由
slowry + 5 + 1 + 1 + 1 精彩帖子

总评分: 论坛币 + 5  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

地板
zhc8877(真实交易用户) 发表于 2021-2-26 21:43:21
感谢楼主分享!
已有 1 人评分论坛币 学术水平 热心指数 信用等级 收起 理由
slowry + 5 + 1 + 1 + 1 精彩帖子

总评分: 论坛币 + 5  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

7
cuht(未真实交易用户) 发表于 2021-2-27 00:28:47

8
nicacc(真实交易用户) 在职认证  发表于 2021-2-27 08:45:44
感谢楼主分享!
已有 1 人评分论坛币 学术水平 热心指数 信用等级 收起 理由
slowry + 5 + 1 + 1 + 1 精彩帖子

总评分: 论坛币 + 5  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

9
hyq2003(未真实交易用户) 发表于 2021-2-27 09:07:28
谢谢分享
已有 1 人评分论坛币 学术水平 热心指数 信用等级 收起 理由
slowry + 5 + 1 + 1 + 1 精彩帖子

总评分: 论坛币 + 5  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

10
benji427(未真实交易用户) 在职认证  发表于 2021-2-27 09:14:50
THANK YOU FOR SHARING
已有 1 人评分论坛币 学术水平 热心指数 信用等级 收起 理由
slowry + 5 + 1 + 1 + 1 精彩帖子

总评分: 论坛币 + 5  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2026-1-3 20:04