sqreg y x1 x2 x3,quant(0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9)
(fitting base model)
(bootstrapping ....................)
Simultaneous quantile regression Number of obs = 81
bootstrap(20) SEs .10 Pseudo R2 = 0.2432
.20 Pseudo R2 = 0.2269
.30 Pseudo R2 = 0.2190
.40 Pseudo R2 = 0.2190
.50 Pseudo R2 = 0.2451
.60 Pseudo R2 = 0.2724
.70 Pseudo R2 = 0.3077
.80 Pseudo R2 = 0.3669
.90 Pseudo R2 = 0.3998
------------------------------------------------------------------------------
| Bootstrap
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
q10 |
x1 | 4.244264 2.166244 1.96 0.054 -.0692791 8.557806
x2 | .1784878 .216807 0.82 0.413 -.2532301 .6102057
x3 | -.0332855 .010871 -3.06 0.003 -.0549325 -.0116386
_cons | -4.011645 4.485963 -0.89 0.374 -12.94434 4.921049
-------------+----------------------------------------------------------------
q20 |
x1 | 6.536279 3.013593 2.17 0.033 .5354489 12.53711
x2 | .3237864 .1296771 2.50 0.015 .0655663 .5820064
x3 | -.0312169 .006372 -4.90 0.000 -.0439051 -.0185287
_cons | -7.139989 2.85231 -2.50 0.014 -12.81966 -1.460314
-------------+----------------------------------------------------------------
q30 |
x1 | 8.710209 3.461219 2.52 0.014 1.818042 15.60238
x2 | .5167037 .2771683 1.86 0.066 -.0352089 1.068616
x3 | -.0285701 .008155 -3.50 0.001 -.0448087 -.0123314
_cons | -11.22525 5.558644 -2.02 0.047 -22.29393 -.1565767
-------------+----------------------------------------------------------------
q40 |
x1 | 8.628939 3.485827 2.48 0.016 1.68777 15.57011
x2 | .823844 .2944979 2.80 0.007 .2374238 1.410264
x3 | -.0311544 .008423 -3.70 0.000 -.0479267 -.0143821
_cons | -17.13608 5.987672 -2.86 0.005 -29.05906 -5.213103
-------------+----------------------------------------------------------------
q50 |
x1 | 7.434057 2.595312 2.86 0.005 2.26613 12.60198
x2 | .6827448 .1644746 4.15 0.000 .355234 1.010256
x3 | -.0266345 .0079297 -3.36 0.001 -.0424247 -.0108444
_cons | -13.99752 3.506714 -3.99 0.000 -20.98027 -7.014757
-------------+----------------------------------------------------------------
q60 |
x1 | 7.364803 2.107857 3.49 0.001 3.167524 11.56208
x2 | .7894423 .1552811 5.08 0.000 .4802382 1.098646
x3 | -.0312381 .0071463 -4.37 0.000 -.0454683 -.0170079
_cons | -15.88598 2.984993 -5.32 0.000 -21.82986 -9.942096
-------------+----------------------------------------------------------------
q70 |
x1 | 5.672725 1.305768 4.34 0.000 3.072607 8.272842
x2 | .9284002 .2137704 4.34 0.000 .502729 1.354071
x3 | -.0354224 .0067436 -5.25 0.000 -.0488506 -.0219942
_cons | -18.27294 4.240414 -4.31 0.000 -26.71668 -9.829193
-------------+----------------------------------------------------------------
q80 |
x1 | 7.090671 1.396285 5.08 0.000 4.310313 9.87103
x2 | 1.064819 .1948947 5.46 0.000 .6767343 1.452904
x3 | -.0391097 .0068329 -5.72 0.000 -.0527159 -.0255036
_cons | -20.97264 3.965186 -5.29 0.000 -28.86834 -13.07695
-------------+----------------------------------------------------------------
q90 |
x1 | 4.889381 3.118386 1.57 0.121 -1.320119 11.09888
x2 | 1.549929 .3272048 4.74 0.000 .8983814 2.201478
x3 | -.0405577 .0156801 -2.59 0.012 -.0717808 -.0093345
_cons | -30.2895 6.533871 -4.64 0.000 -43.3001 -17.2789
------------------------------------------------------------------------------
本人初接触stata 做的分位数回归结果,但是有点看不懂,请高人指点里面的标准化回归系数是哪个?????我只能找到回归系数,标准化的找不到


雷达卡




京公网安备 11010802022788号







