|
我也遇到了这个问题,蹲一个解决方法
用
“关于如何实现和加快收敛的提示如果你无法通过cmp实现收敛,下面这些方法可能会对你有所帮助:1.使用ml的technique()选项或通过其最大化选项更改搜索参数来更改搜索方法。cmp可以实现上述功能并将结果传递给ml。只要ml发现凹面区域,默认的Newton-Raphson搜索方法就可以很好地执行其功能。在此之前,DFP算法(tech(dfp))通常效果更好,并且可以与tech(dfp nr)混合使用。请参见ml处technique()选项的详细信息。2.如果估计问题需要GHK算法(该算法具体内容请参见上文),请使用ghkdraws()选项更改模拟序列中每个观测值的取值次数。为了cmp有效运行,默认情况下,它需要的观测值数量是GHK算法的观测值数量的平方根的两倍,即至少三个方程中被删失的观测值数量。对于收敛而言,有时候我们必须通过增加取值次数来提高模拟的准确性,同时,我们可以通过提高搜索精度来加快模拟速度。但是,我们通过每个观测值极少的取值次数就可以实现收敛,但在结果的精度上会有所损失,特别是当观测值数量很大时,例如,当样本量为10,000时,取值次数只有5个(Cappellari和Jenkins 2003)。如果进行更多的取值则会大大延长执行时间。3.如果收到很多“(not concave)”信息,请尝试difficult选项,该选项指示ml在非凹面区域中使用其他搜索算法。4.如果搜索看起来在可能性上收敛或者对数可能性在每次迭代中几乎没有变化,但收敛失败,请尝试在逗号后向命令行添加nrtolerance(#)或nonrtolerance选项。这些都是ml选项,用于控制何时宣布实现了收敛(请参见下面的ml_opts)。”
|