摘要翻译:
我们研究吉布斯型碎裂树。在二元情形下,我们用Aldous的beta-分裂模型识别了最一般的Gibbs型碎片树,该树相对于它所基于的${\rm beta}(\beta+1,\beta+1)$概率分布具有扩展的参数范围$\beta>-2$。在多分叉情形下,我们证明了Gibbs碎片树与两参数Poisson-Dirichlet模型有关,可交换随机分区为$\mathbb{N}$,其扩展参数范围为$0\le\alpha\le1$,$\theta\ge-2\alpha$和$\alpha<0$,$\theta=-m\alpha$,$m\In\mathbb{N}$。
---
英文标题:
《Gibbs fragmentation trees》
---
作者:
Peter McCullagh, Jim Pitman, Matthias Winkel
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We study fragmentation trees of Gibbs type. In the binary case, we identify the most general Gibbs-type fragmentation tree with Aldous' beta-splitting model, which has an extended parameter range $\beta>-2$ with respect to the ${\rm beta}(\beta+1,\beta+1)$ probability distributions on which it is based. In the multifurcating case, we show that Gibbs fragmentation trees are associated with the two-parameter Poisson--Dirichlet models for exchangeable random partitions of $\mathbb {N}$, with an extended parameter range $0\le\alpha\le1$, $\theta\ge-2\alpha$ and $\alpha<0$, $\theta =-m\alpha$, $m\in \mathbb {N}$.
---
PDF链接:
https://arxiv.org/pdf/704.0945


雷达卡



京公网安备 11010802022788号







