摘要翻译:
本文给出了射影平面上d条直线的排列与p^{d-2}中直线的排列之间的一一对应关系。我们应用这个对应关系对所有q<=6的复数上的(3,q)-网进行分类。当q=6时,我们有十二种可能的组合情形,但我们证明其中只有九种是可实现的。这个新的情形表明了3-网的几个新的性质:模的不同维数,在某些域上的严格实现等。我们还构造了一个与四元数群相对应的三维(3,8)-网族。
---
英文标题:
《On line arrangements with applications to 3-nets》
---
作者:
Giancarlo Urzua
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
We show a one-to-one correspondence between arrangements of d lines in the projective plane, and lines in P^{d-2}. We apply this correspondence to classify (3,q)-nets over the complex numbers for all q<=6. When q=6, we have twelve possible combinatorial cases, but we prove that only nine of them are realizable. This new case shows several new properties for 3-nets: different dimensions for moduli, strict realization over certain fields, etc. We also construct a three dimensional family of (3,8)-nets corresponding to the Quaternion group.
---
PDF链接:
https://arxiv.org/pdf/0704.0469


雷达卡



京公网安备 11010802022788号







