摘要翻译:
在规范理论方法的基础上,我们提出了一种证明VII类曲面上曲线存在性的一般策略。证明了对于$b2=2$,每一极小VII类曲面都有一个有理曲线圈,从而根据Nakamura的一个结果,证明了一个单参数爆破主Hopf曲面族的整体变形。前一篇文章已经解决了$b_2=1$的情况。介入我们策略的基本对象是多稳定包${\mathcal M}^{\pst}(0,{\mathcal K})$的模空间${\mathcal E}$,其中$C_2({\mathcal E})=0$,$\det({\mathcal E})={\mathcal K}$。对于大的$B_2$,这个模空间的几何变得非常复杂。这里详细讨论的B_2=2$的情况需要新的思想和复杂几何和规范理论性质的困难技术。
---
英文标题:
《Instantons and curves on class VII surfaces》
---
作者:
Andrei Teleman
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
---
英文摘要:
We develop a general strategy, based on gauge theoretical methods, to prove existence of curves on class VII surfaces. We prove that, for $b_2=2$, every minimal class VII surface has a cycle of rational curves hence, by a result of Nakamura, is a global deformation of a one parameter family of blown up primary Hopf surfaces. The case $b_2=1$ has been solved in a previous article. The fundamental object intervening in our strategy is the moduli space ${\mathcal M}^{\pst}(0,{\mathcal K})$ of polystable bundles ${\mathcal E}$ with $c_2({\mathcal E})=0$, $\det({\mathcal E})={\mathcal K}$. For large $b_2$ the geometry of this moduli space becomes very complicated. The case $b_2=2$ treated here in detail requires new ideas and difficult techniques of both complex geometric and gauge theoretical nature.
---
PDF链接:
https://arxiv.org/pdf/0704.2634


雷达卡



京公网安备 11010802022788号







