楼主: mingdashike22
440 0

[计算机科学] 因特网分析用群集、图形和网络。Web支持的 虚拟社区中的交流 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
73.8816
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24862 点
帖子
4109
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-3-2 22:16:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
建议使用簇、图和网络作为模型来分析Web结构。集群、图形和网络提供知识表示和组织。通过共位点分析生成簇。样本是一组来自欧洲联盟国家的学术网站。这里从图论和社会网络分析的角度重新审视这些集群。这是一个定量和结构分析。事实上,互联网是连接人和组织的计算机网络。因此,我们可以认为它是一个社会网络。这些学术网站代表了一个经验性的社会网络,并被视为一个虚拟社区。本文将聚类分析、图论和社会网络分析相结合,分析了网络的结构特征。
---
英文标题:
《Clusters, Graphs, and Networks for Analysing Internet-Web-Supported
  Communication within a Virtual Community》
---
作者:
Xavier Polanco (INIST)
---
最新提交年份:
2007
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--

---
英文摘要:
  The proposal is to use clusters, graphs and networks as models in order to analyse the Web structure. Clusters, graphs and networks provide knowledge representation and organization. Clusters were generated by co-site analysis. The sample is a set of academic Web sites from the countries belonging to the European Union. These clusters are here revisited from the point of view of graph theory and social network analysis. This is a quantitative and structural analysis. In fact, the Internet is a computer network that connects people and organizations. Thus we may consider it to be a social network. The set of Web academic sites represents an empirical social network, and is viewed as a virtual community. The network structural properties are here analysed applying together cluster analysis, graph theory and social network analysis.
---
PDF链接:
https://arxiv.org/pdf/0707.1452
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:虚拟社区 因特网 WEB Organization Presentation clusters 使用 网络分析 Internet network

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-28 11:44