楼主: 何人来此
412 0

[电气工程与系统科学] 学习优化:无线深度神经网络的训练 资源管理 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.8012
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24593 点
帖子
4128
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-3 13:15:40 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
在过去的几十年里,数值优化在解决无线资源管理问题如功率控制和波束形成器设计方面发挥了核心作用。然而,优化算法往往具有相当大的复杂性,这在理论设计/分析和实时处理之间造成了严重的差距。为了应对这一挑战,我们提出了一种新的基于学习的方法。其关键思想是将资源分配算法的输入和输出看作一个未知的非线性映射,并利用深度神经网络(DNN)对其进行逼近。如果非线性映射可以被中等大小的DNN精确地学习,那么资源分配几乎可以实时完成--因为通过DNN传递输入只需要少量的简单操作。在本工作中,我们讨论了基于DNN的算法逼近在无线资源管理中的应用。我们首先通过一个完全连通的DNN确定了一类在理论上是“可学习”的优化算法。然后,我们重点研究了基于DNN的功率分配算法WMMSE(Shi{\it et al}2011)的逼近。我们证明了使用DNN近似WMMSE是相当精确的--近似误差$\epsilon$略微依赖于DNN的神经元数和层数[$\log(1/\epsilon)$]。在实现方面,我们通过大量的数值模拟证明了DNNs与现有的基于优化的功率分配算法相比,在计算时间上可以实现数量级的加速。
---
英文标题:
《Learning to Optimize: Training Deep Neural Networks for Wireless
  Resource Management》
---
作者:
Haoran Sun, Xiangyi Chen, Qingjiang Shi, Mingyi Hong, Xiao Fu,
  Nicholas D. Sidiropoulos
---
最新提交年份:
2017
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Information Theory        信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics        数学
二级分类:Information Theory        信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--

---
英文摘要:
  For the past couple of decades, numerical optimization has played a central role in addressing wireless resource management problems such as power control and beamformer design. However, optimization algorithms often entail considerable complexity, which creates a serious gap between theoretical design/analysis and real-time processing. To address this challenge, we propose a new learning-based approach. The key idea is to treat the input and output of a resource allocation algorithm as an unknown non-linear mapping and use a deep neural network (DNN) to approximate it. If the non-linear mapping can be learned accurately by a DNN of moderate size, then resource allocation can be done in almost real time -- since passing the input through a DNN only requires a small number of simple operations.   In this work, we address both the thereotical and practical aspects of DNN-based algorithm approximation with applications to wireless resource management. We first pin down a class of optimization algorithms that are `learnable' in theory by a fully connected DNN. Then, we focus on DNN-based approximation to a popular power allocation algorithm named WMMSE (Shi {\it et al} 2011). We show that using a DNN to approximate WMMSE can be fairly accurate -- the approximation error $\epsilon$ depends mildly [in the order of $\log(1/\epsilon)$] on the numbers of neurons and layers of the DNN. On the implementation side, we use extensive numerical simulations to demonstrate that DNNs can achieve orders of magnitude speedup in computational time compared to state-of-the-art power allocation algorithms based on optimization.
---
PDF链接:
https://arxiv.org/pdf/1705.09412
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:资源管理 神经网络 神经网 Optimization Applications 资源分配 功率 resource approximation

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-1 01:03