楼主: 可人4
285 0

[数学] 冲突集的度量性质 [推广有奖]

  • 0关注
  • 2粉丝

会员

学术权威

76%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
49.0443
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24465 点
帖子
4070
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
可人4 在职认证  发表于 2022-3-3 14:06:40 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
本文证明了$r^n$中冲突集的切锥是维数较小的冲突集上的线性仿射锥,其维数为$n-1$。此外,我们给出了一个冲突集通常不是嵌入的且不是局部bi-Lipschitz等价于相应切锥的例子。
---
英文标题:
《Metric Properties of Conflict Sets》
---
作者:
Lev Birbrair, Dirk Siersma
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Metric Geometry        度量几何学
分类描述:Euclidean, hyperbolic, discrete, convex, coarse geometry, comparisons in Riemannian geometry, symmetric spaces
欧氏,双曲,离散,凸,粗几何,黎曼几何的比较,对称空间
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  In this paper we show that the tangent cone of a conflict set in $R^n$ is a linear affine cone over a conflict set of smaller dimension and has dimension $n-1$. Moreover we give an example where the conflict sets is not normally embedded and not locally bi-Lipschitz equivalent to the corresponding tangent cone.
---
PDF链接:
https://arxiv.org/pdf/0704.3992
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:mathematics comparisons Mathematic Properties Hyperbolic dimension 仿射 给出 集上 相应

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 19:12