摘要翻译:
在机器唇读中,关于用于识别的正确类别的争论和研究仍在继续。在本文中,我们使用一种结构化的方法来设计说话人相关的视素类,这种方法能够创建一组音素到视素的映射,其中每个视素都有不同数量的视素,从2到45不等。Viseme类是基于在音素识别过程中被混淆的拼接音素映射到Viseme组。利用这些映射,结合LiLIR数据集,我们展示了在说话人相关的机器唇读中改变viseme映射大小的效果,并用单词识别的正确性来衡量,从而证明用音素分类器进行单词识别不仅是可能的,而且往往比用viseme分类器进行单词识别更好。此外,在音素和音素之间有中间单位,这是更好的。
---
英文标题:
《Finding phonemes: improving machine lip-reading》
---
作者:
Helen L. Bear, Richard W. Harvey, Yuxuan Lan
---
最新提交年份:
2017
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computation and Language 计算与语言
分类描述:Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.
涵盖自然语言处理。大致包括ACM科目I.2.7类的材料。请注意,人工语言(编程语言、逻辑学、形式系统)的工作,如果没有明确地解决广义的自然语言问题(自然语言处理、计算语言学、语音、文本检索等),就不适合这个领域。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
In machine lip-reading there is continued debate and research around the correct classes to be used for recognition. In this paper we use a structured approach for devising speaker-dependent viseme classes, which enables the creation of a set of phoneme-to-viseme maps where each has a different quantity of visemes ranging from two to 45. Viseme classes are based upon the mapping of articulated phonemes, which have been confused during phoneme recognition, into viseme groups. Using these maps, with the LiLIR dataset, we show the effect of changing the viseme map size in speaker-dependent machine lip-reading, measured by word recognition correctness and so demonstrate that word recognition with phoneme classifiers is not just possible, but often better than word recognition with viseme classifiers. Furthermore, there are intermediate units between visemes and phonemes which are better still.
---
PDF链接:
https://arxiv.org/pdf/1710.01142


雷达卡



京公网安备 11010802022788号







