摘要翻译:
设W->X是由有理曲线构成的实光滑射影三重纤维。Koll\'ar证明了如果W(R)是可定向的,则W(R)的连通分量N本质上是Seifert纤维流形或透镜空间的连通和。设k:=k(N)为定义如下的整数:如果g:n->F是Seifert纤维,则定义k:=k(N)为g的多个纤维的个数;如果N是透镜空间的连通和,则定义k为与P^3(R)不同的透镜空间的个数。我们的主要定理说:如果X是几何有理曲面,那么k<=4。此外,我们还证明了如果F是S^1×S^1的差胚,则W(R)是连通的,且k=0。这些结果回答了Koll\'ar的两个肯定问题,他在1999年证明了k<=6,并提出4是锐界。我们从对只有Du Val奇点的实奇异Del Pezzo曲面的仔细研究中导出了该定理。
---
英文标题:
《Real singular Del Pezzo surfaces and threefolds fibred by rational
curves, I》
---
作者:
Fabrizio Catanese, Fr\'ed\'eric Mangolte
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let W -> X be a real smooth projective threefold fibred by rational curves. Koll\'ar proved that if W(R) is orientable a connected component N of W(R) is essentially either a Seifert fibred manifold or a connected sum of lens spaces. Let k : = k(N) be the integer defined as follows: If g : N -> F is a Seifert fibration, one defines k : = k(N) as the number of multiple fibres of g, while, if N is a connected sum of lens spaces, k is defined as the number of lens spaces different from P^3(R). Our Main Theorem says: If X is a geometrically rational surface, then k <= 4. Moreover we show that if F is diffeomorphic to S^1xS^1, then W(R) is connected and k = 0. These results answer in the affirmative two questions of Koll\'ar who proved in 1999 that k <= 6 and suggested that 4 would be the sharp bound. We derive the Theorem from a careful study of real singular Del Pezzo surfaces with only Du Val singularities.
---
PDF链接:
https://arxiv.org/pdf/0705.0814


雷达卡



京公网安备 11010802022788号







