摘要翻译:
鉴于严重的空气污染问题,空气质量指数(AQI)监测近年来受到越来越多的关注。本文设计了一个安装在无人机上的移动AQI监测系统ARMS,以高效地实时构建细粒度AQI地图。具体来说,我们首先提出了基于神经网络的高斯羽流模型(GPM-NN),以物理表征空气中粒子的弥散。基于GPM-NN,我们提出了一种有效的自适应电池监测算法,用于监测选定位置的AQI,并利用检测到的数据构建准确的AQI地图。该自适应监控算法在两个典型场景下进行了评估,一个是像路边公园这样的二维开放空间,另一个是像建筑内部庭院这样的三维空间。实验结果表明,GPM-NN算法在提高AQI预测精度的同时,大大降低了自适应监测算法的功耗。
---
英文标题:
《Realtime Profiling of Fine-Grained Air Quality Index Distribution using
UAV Sensing》
---
作者:
Yuzhe Yang, Zijie Zheng, Kaigui Bian, Lingyang Song, Zhu Han
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
Given significant air pollution problems, air quality index (AQI) monitoring has recently received increasing attention. In this paper, we design a mobile AQI monitoring system boarded on unmanned-aerial-vehicles (UAVs), called ARMS, to efficiently build fine-grained AQI maps in realtime. Specifically, we first propose the Gaussian plume model on basis of the neural network (GPM-NN), to physically characterize the particle dispersion in the air. Based on GPM-NN, we propose a battery efficient and adaptive monitoring algorithm to monitor AQI at the selected locations and construct an accurate AQI map with the sensed data. The proposed adaptive monitoring algorithm is evaluated in two typical scenarios, a two-dimensional open space like a roadside park, and a three-dimensional space like a courtyard inside a building. Experimental results demonstrate that our system can provide higher prediction accuracy of AQI with GPM-NN than other existing models, while greatly reducing the power consumption with the adaptive monitoring algorithm.
---
PDF链接:
https://arxiv.org/pdf/1711.02821


雷达卡



京公网安备 11010802022788号







