楼主: mingdashike22
416 0

[计算机科学] 论独特型互动对推荐社区的影响 在人工免疫系统中 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
73.8816
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24862 点
帖子
4109
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-3-4 10:12:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
以前的研究表明,基于免疫系统独特型原理的推荐器可以比仅基于相关性的推荐器更有效。本文报告了正在进行的工作的结果,其中我们对这种有益效果的性质进行了一些调查。最初的发现是免疫系统推荐器倾向于产生不同的邻域,这种推荐器的优越性能部分归因于不同的邻域,部分归因于独特型效应被用来加权每个邻域的推荐。
---
英文标题:
《On the Effects of Idiotypic Interactions for Recommendation Communities
  in Artificial Immune Systems》
---
作者:
Steve Cayzer and Uwe Aickelin
---
最新提交年份:
2008
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Neural and Evolutionary Computing        神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  It has previously been shown that a recommender based on immune system idiotypic principles can out perform one based on correlation alone. This paper reports the results of work in progress, where we undertake some investigations into the nature of this beneficial effect. The initial findings are that the immune system recommender tends to produce different neighbourhoods, and that the superior performance of this recommender is due partly to the different neighbourhoods, and partly to the way that the idiotypic effect is used to weight each neighbours recommendations.
---
PDF链接:
https://arxiv.org/pdf/0801.3539
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:免疫系统 Intelligence interactions Presentation Evolutionary based 产生 recommender 有益 性质

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 00:39